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Models for the Population
- - Dynamics of Transposable
Elements in Bacteria
Richard Condit

Transposable elements are segments of DNA capable of moving to new sites
in the genome. They are widespread among both eucaryotes and procaryotes,
probably occurring in all genomes. Besides being replicated during each
generation as part of normal DNA synthesis, transposable elements (or
transposons) also replicate during transposition, leaving a copy at the orig-
inal site while inserting at a new site. This ability to transfer between ge-
nomes has led to concern about releasing genetically engineered organisms
because of the possibility that introduced genes might be mobilized into
transposons, onto plasmids, and spread into new organisms (Levy and Mar-
shall 1988). So understanding the basic population dynamics of transposable
elements—the processes that allow them to invade new bacterial strains and
the factors that control their copy number in genomes—are important 1o
biotechnology risk assessment. We should base decisions about the impor-
tance of gene transfer in genetically engineered microorganisms on a firm
understanding of basic population processes.

Two alternative theories account for how transposons spread into new
bacterial strains. According to one, transposons are parasitic DNA and can
invade new populations despite the fact that they are detrimental to the
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genome in which they reside (Doolittle and Sapienze 1980; Orgel and Crick
1980; Campbell 1981). The major alternative is that transposons improve
the fitness of their host and so might be termed “mutualistic DNA.” In
bacteria, the latter hypothesis is particularly attractive because many trans-
posons carry with them (during transposition) traits that are useful to the
host bacterium, such as genes for antibiotic resistance or heavy metal re-
sistance (Cohen 1976; Tanaka et al. 1983). Not all bacterial transposons
carry beneficial genes, but there are other ways that they might benefit their
host, such as by causing beneficial mutations (Reynolds et al. 1981; Chao
et al. 1983).

One goal of population studies of transposable elements is to develop
an experimental and theoretical system for testing the above hypotheses,
and mathematical models are a major component of this system. The pur-
pose of this paper is to review the use of mathematical models in studies
of the population processes that account for the abundance, distribution,
and movement of transposons in and between bacterial populations. There
have been two modeling studies explicitly aimed at the study of bacterial
transposons—one by Sawyer and Hartl (1986), and the other by myself,
Frank Stewart, and Bruce Levin (Condit et al. 1988). I will not consider
here the substantial literature on models for eucaryotic transposons (such
as Hickey 1982; Charlesworth and Charlesworth 1983; Ginzburg et al. 1984).

Sawyer and Hartl were interested in the copy number of transposable
elements in bacteria. Since transposons can replicate within a genome, copy
number should build up through evolutionary time, until detrimental effects
of the elements balance the increase. The Sawyer and Hartl model seeks to
predict equilibrium copy number distributions based on various assump-
tions about transposition and its effect on fitness. Condit et al. (1988) were
interested in a different issue—the invasion of a transposon into a new
bacterial population due to its ability to transpose into new genomes.

Before continuing with a discussion of the models, it is necessary to
provide a brief review of transposon biology and the terminology associated
with it. In addition, discussion of the Condit et al. model requires some
background in plasmid biology.

8.1 BACKGROUND AND TERMINOLOGY

In bacteria, transposable elements that carry no genes other than the two
necessary for transposition are called “insertion sequences” and are given
names that begin with “IS”—such as IS4 and IS70. Elements that carry genes
besides the basic two are called “Tn elements”—such as Tn3, Tn5, and Tnl0
(Campbell et al. 1977).

Most theoretical considerations of transposon biology assume that trans-
position is a replicative process, where transfer to a new site leads to an
increase in copy number of the transposon. Indeed, where direct evidence
is available, transposition is replicative (Klaer et al. 1980; Read et al. 1980).
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It has been suggested, however, that some transposons are conservative,
meaning that they move to a new site without leaving a copy behind (Berg
1977). From a population perspective, this is a very important distinction
and one that must be considered in constructing a model. To avoid con-
fusion, I define replicative and conservative strictly in terms of copy num-
ber—replicative transposition means a cell with one copy gets two, while
conservative transposition leaves it with one—not in terms of molecular
mechanisms. Transposons can also be excised from a genome, reducing by
one the number of copies in the cell (Berg 1977; Bottstein and Kleckner
1977, Egner and Berg 1981; Iida et al. 1983).

In theory, rates of transposition (or excision) can be defined as the
probability that an individual cell carrying a transposon will undergo trans-
position (or excision) per unit of time. Alternatively, this can be viewed as
the proportion of cells in which the event occurs in the same time interval.
In practice, accurate measurement of these rates can prove elusive.

Transposition is often regu/ated by the transposon itself. Multiple copies
of an element within a cell tend to inhibit the transposition process, so that
the rate of transposition may decline (Kleckner 1981).

Transposons are generally capable of moving between two sites within
the same chromosome, or between two different pieces of DNA in the sanie
cell, such as a plasmid and a chromosome, or two plasmids. Most trans-
posons cannot move into new cells without the help of some other mech-
anism for DNA exchange. (A few transposons are able to move between
cells, but they are exceptional and will not be considered here; see Gawron-
Burke and Clewell 1982.) In eucaryotes, fusion of gametes from different
individuals (“sex™) provides such a mechanism, and this happens reliably
once each generation. Gene transfer is less reliable and less well understood
in procaryotes, occurring by one of three mechanisms—transduction, trans-
formation, or conjugation. We chose to model the last one as the vehicle
for transposon movement in our work (Condit et al. 1988).

Conjugation occurs when conjugative plasmids move between bacterial
cells. Conjugative plasmids are small circles of DNA which inhabit bacteria,
replicating and partitioning to daughter cells during cell division, and also
capable of infecting new cells via conjugation (or mating). A cell with plas-
mids physically contacts one without, and the plasmid replicates and trans-
fers between cells—two plasmid-bearing cells result. Plasmids can also be
lost from individual cells through a process called segregation. Of particular
significance for the present subject, plasmids often carry transposable ele-
ments.

8.2 MODELS

8.2.1 A Basic Model

As a simple illustration, which serves to introduce the structure of models
for bacterial transposons, I first describe a very basic model: consider a set
of interacting, time-dependent, dynamical systems that represent a mixture
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of populations ofbi;cterial cells, some without transposons and others with
one or more elements. Let N, be the population density of cells carrying /
copies of a transposable element, and let ¥, be the growth rate of this /*
population. Transposition in the N, population and excision in the N,,,
population create N, cells, while either transposition or excision in the VN,
population destroys N, cells (the “N* symbols designate cell types as well
as densities of those cell populations). Then the rate of change of each
population (for i>1) can be written:

N, = W,N, + 6N_, — (¢ + 8N, + N, (1)

Here and in subsequent equations, a dot over a letter represents differen-
tiation with respect to time. Transposition rate is represented by 8, and
excision rate by e.

¥, is an important term because it defines any fitness effect of the trans-
posable element. For example, if ¥,<¥, for all i>0, then the transposon is
deleterious. In more familiar population genetics terminology, the selective
coefficient s, of the N, population would be defined such that ¥, = ¥,(1 —
).

The reason equation 1 cannot be applied when i = O and i = 1 is
because cell type N, has no transposons and cannot be converted to type
N, via transposition. Additional assumptions are needed to deal with the
infection process; these will be treated below.

Both models considered here—that of Sawyer and Hartl and that of
Condit et al.—are developed from this simple framework. But since they
asked different questions, their analyses were quite different. Condit et al.
examined this system when transposon-bearing populations are rare, and
Sawyer and Hartl examined equilibria. In addition, as will become evident,
there are other important differences between the models, particularly with
regard to how the uninfected cells N, get their first transposon.

8.2.2 Sawyer and Hartl—A Model for Copy Number Distribution
Sawyer and Hartl (1986) were most interested in the dynamics of the copy
number of a transposon in a population already carrying the element, and
what regulates copy number. Copy number should be a result of the interplay
between transposition, which drives copy number up, and excision and the
fitness effect of the transposon, which tend to force it down. To simplify
matters, however, Sawyer and Hartl ignored excision, since its rate is usually
much lower than the transposition rate (Egner and Berg 1981; Foster et al.
1981b; Kleckner 1981).

8.2.2.1 Design of the Model Although their model is fundamentally very
similar to the basic one described above, it differs in a few particulars. The
growth rate of each population N, is expressed as ¥ — A, where ¥ is constant
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and A, = 0; hence, ¥ — 4, = ¥, of equation 1. The death rate caused by
i transposons is given by 4,. Excision is ignored altogether. The problem of
the infection of new cclls is overcome in the simplest way possible: a single
rate constant p is defined as the infection rate.

This model leads to a series of differential equations:

No = WoN, —
1y. = ¥ N, + ,uvo 8N, — AN,
N, = ¥N, + §_N., — 8N, — AN. (2)

Note that absolute population size is not regulated in this model—it either
grows or shrinks indefinitely. The only concern is with relative population
sizes. Sawyer and Hartl also considered a model where population size is
kept constant, in which the death of transposon-bearing cells is always ac-
companied by the creation of an equal number of transposon-free cells. This
leads to only slightly different equilibria from the unregulated model given
in equation 2.

The distribution of copy number of ttansposons is given by the relative
populations of N,. The equilibrium distribution will depend on transposition
and death rates—5, and A,—and how each changes with copy number i. If
transposition is unregulated, & increases linearly with , and if each trans-
poson copy causes the same decrement in fitness, then A increased linearly
with i, On the other hand, if transposition were regulated, then § might
increase less than linearly, or even decrease with 1.

Sawyer and Hartl’s analysis consisted of finding equilibrium distribu-
tions of copy number for given examples of functions for §; and A, They
found the equilibria by analyzing the system as a Markov chain, that is,
each cell can be viewed as travelling a probabilistic pathway through dif-
ferent copy numbers. For example, a cell with one copy is converted to
either one with zero, one, or two with defined probabilities, and then con-
verted again, etc. The derivations of equilibria of Markov chains are beyond
the scope of this chapter (see Sawyer and Hartl 1986).

An alternative procedure for finding equilibria would be to use the
differential equations (see equation 2) Ny, /N; is constant at an equilibrium
distribution of copy number, which is true when N,N,,, NR,N, In general,
this does not lead to explicit solutions for N,,,/N,, but the technique can be
used for particular functions of A, and §,. In the regulated model, where
population sizes are constant at equilibrium, the distribution of copy num-
ber can be found by setting all derivatives to zero. This method can lead
to explicit solutions for N,,/N,

8.2.2.2 Results. For the purpose of illustrating how the model works and
some of its conclusions, I have calculated equilibrium copy number distri-
butions for a couple of fitness and transposition functions used by Sawyer



156  Models for the Population Dynamics of Transposable Elements in Bacteria

etal. (1987), using the equations of the model with no pop@lation regulation
as given in their paper:

1. Without any fitness detriment caused by the transposon (A = 0), and
without excision, copy number can only increase. Without any regulation
of transposition rate, increase continues until all cells have an infinite
number of copies, or until a copy number at which transposition ceases.
This is a “null hypothesis™ that spawned the modeling analysis. Clearly,
in nature, something limits the copy number of genes that are capable
of replicating themselves within the genome. There are other circum-
stances that lead to unlimited build-up of copy number, for example, if
u>A, + 6, and A, <4,

2. The simplest model considered by Sawyer and Hartl is where é and A
are constant and independent of copy number. This represents strong
regulation of transposition rate, since §, does not increase at all. The
equilibrium distribution of copy number is geometric, with the ratio
N,.\/N; a constant for all j=1 (Figure 8-1). This is a rather nonintuitive
result: since high copy number results in no greater mortality, and trans-
position creates more and more copies, one might expect copy number
to build up indefinitely. The reason for a geometric decline in the abun-
dance of cell types with higher copy number can be explained as follows:
The density of any cell type N, declines due to two forces—transposition
to make N, and death—but is created by only one event—transposition
in the N,_, population. Thus, for the relative sizes of N, to be at equilib-
rium, N,_, must be greater than N,

The stationary distribution generated for any particular pair of func-
tions §; and A, and for the parameter u depends only on their relative,
not their absolute, values. This should be intuitive. All that matters is
whether or not transposition rate is fast enough to overcome a fitness
cost it engenders—the relative strength of the two forces. Higher param-
eter values will increase the speed with which the equilibrium is reached,
though.

3. A simple alternative is when transposition and mortality rates are pro-
portional to i: then A; = jA and §, = i6 (A and ¢ are constants), and there
is no regulation of transposition rate. In this situation, the ratio N,,/N,
is not constant at equilibrium, as in the model above, but declines to an
asymptote as i increases. As illustrated in Figure 8-1, it is possible to
generate a bimodal distribution of copy number with these functions,
with modes at i = 0 and some i>0.

4. Sawyer et al. (1987) considered four other functions for §, and A, har-
monic, root, inverse root, and quadratic. Since each model required one
function for each of the two. variable parameters, a total of 36 models
could have been analyzed (six functions for each parameter). Only nine
were actually tested though, those that were most reasonable biologically.
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FIGURE 8-1 Theoretical distributions of transposon copy number at equilibrium,
shown as the proportion of strains with various copy numbers. Top: constant model
(transposition rate 8 and mortality due to transposition A do not vary with copy
number); § = 10 and A = 10~ infection rate = x = 3 X 1075 Bottom: linear
model; § = 10~ and A = 6 X 10-% (increasing linearly with copy number 7); infection
rate ¢ = 7 X 105, These parameters were chosen in order to create a bimodal
distribution. (The equation used to calculate the equilibrium distribution is given
in Sawyer et al. 1987, p. 56; note that the variable symbols are different.)
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Equilibrium di%tributions resulting from these models will not be given
here.

8.2.2.3 Applications and Conclusions. One of the advantages of this mod-
eling approach was that it was aimed at generating data of a sort that could
be collected from natural populations. In fact, Sawyer and Hartl devised
the model with the explicit intent of comparing theoretical copy number
distributions with data collected on seven IS elements in 71 strains of Es-
cherichi coli (Sawyer et al. 1987).

To fit models against the data, it was necessary first to estimate param-
eter values; the models allowed estimation of two parameters—u/A and é/
A. A goodness-of-fit-test was then used to establish whether there was sig-
nificant deviation between the distribution generated by any one model and
the data for one IS element; with a total of nine models and seven IS
elements, 63 tests were made.

Figure 8-2 shows the distribution of copy number for two insertion
elements in the 71 strains. The distribution of ISS is typical. The largest
copy number is zero, with declining numbers of strains carrying more and
more elements. IS3 is unusual, being the only element showing a bimodal
distribution.

Unfortunately, no strong conclusions could be made from the model-
fitting exercise. Nearly all of the models tested could be used to construct
distributions that fit data from any of the insertion elements. The only
exception was the bimodal IS3, for which only two models provided a
reasonable fit. Since most models fit the data, it appears that the overall
framework provides a useful description of the population dynamics of
transposons. However, since all models fit, the approach could not distin-
guish the quantitative form of relationships between copy number and fit-
ness or transposition rate,

However, one might suggest useful qualitative conclusions just by com-
paring the shapes of distributions from different elements. IS4, IS5, and
IS30 were quite rare—most strains had none of these elements, and very
few had one or more. In contrast, IS/ was common, with few strains un-
infected and some strains with as many as 27 copies. It thus appears that
regulation of copy number is much weaker in IS7 than in IS4, IS5, or IS30.
Either detrimental fitness effects are weaker for ISJ, or there is less regulation
of transposition rate as copy number increases.

In addition, one interesting feature of the distribution of insertion se-
quences in E. coli is that they never fit Poisson distributions, as Drosophila
transposons do. Sawyer and Hartl (1986) argue that this is 1nd1cat1ve of the
lack of recombination between strains of E. coIz

8.2.24 Limitations of the Model. Two fundamental assumptions of this
model need to be underscored in order to assess the generality of the con-
clusions:
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FIGURE 8-2 Actual copy number distributions for two insertion elements; fre-
quency is the proportion of 71 strains with each copy number, as reported in Sawyer
et al. (1987). Top: ISS. Bottom: IS3.
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1. In any model-fitting exercise, one’s conclusions are always limited by the
scope of the models tested. Even if one model fits, one must consider
that untested alternatives may have fit better. For example, transposons
were assumed to be detrimental in terms of fitness in all the models
examined by Sawyer et al. (1987). Could models for beneficial transpo-
sons (which Sawyer and Hartl did create but never tested) have provided
better fits?

2. It was necessary to assume that all 71 strains examined were identical
in parameter values in order to test the models. If strains differed in
important ways, the statistical tests of goodness-of-fit would be invalid.
The technique has no power to evaluate regulation of copy number within
a single strain.

8.2.3 Condit et al.—A Model Describing Dynamics of
Transposon Populations ‘

The model by Condit et al. is based on principles similar to those described
in the previous section. There is a mixture of populations with and without
transposons, and cells change from one population to another by infection
with a transposon, transposition, etc. But the goal of this model was to
understand the dynamics of a population of transposable elements (within
a population of bacterial cells), rather than equilibrium densities. For this
reason, we wanted to develop a model that explicitly described the infection
process and the dynamics of transposition.

Most transposons are unable to move between cells, so they can only
infect new cells if there is some mechanism available for genome mixing.
In bacteria, there are two reasonable candidates for providing this sort of
“sexuality”-—plasmids and phage. We chose plasmids in our model because
plasmids commonly carry transposons in and between bacterial populations
(Cohen 1976; Datta and Hughes 1983; Hawkey et al. 1985), and because
models for their dynamics are available (Stewart and Levin 1977). Although
phage may be important vehicles for transposons in natural populations,
evidence that they are is lacking. The following model for plasmid dynamics
is so intrinsic to the transposon model that it must be described in some
detail.

8.2.3.1 The Plasmid Model. In the basic plasmid model developed by
Stewart and Levin (1977), there are two cell populations, one without the
plasmid and one with. The cell type designated N, has no plasmids, while
type N, does. Plasmid copy number is ignored—either a cell is infected, or
it is not. Infection is assumed to happen at a rate proportional to the product
of the two population densities, since plasmid transfer requires contact of
N, and N, cells. The rate constant of transfer is v, defined as the probability
per unit time that a single plasmid-free recipient will be infected if a single
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plasmid-bearing donor is present. Also, assume cells lose plasmids at a
constant rate 7. Then the dynamics of the system are described by the
following equations:

Ny = WoNy = yNoN, + 7N,
N, = ¥ ,N, + yN,N, — 7N, (3)

The rate of growth of each population ¥ can be used to define a fitness cost
of carrying the plasmid; define this as s, where ¥, = ¥(1 — s). If s<0, the
plasmid confers a benefit. In addition, population regulation can be built
in by making ¥ a function of a limiting resource concentration. Using che-
mostat models with saturation kinetics (Monod 1949) is a convenient way
to model population regulation; readers should consult other works for de-
tails (Novick 1955; Dykhuizen and Hartl 1983).

A model for the dynamics of two interacting plasmids can easily be
created by extending the basic model (Condit and Levin 1990): population
N, carries plasmid 1, N, carries plasmid 2, and N,, carries both. Inclusion
of the latter population is justified by reality—cells do routinely carry more
than one plasmid type. A new conjugation parameter (v,) is needed to de-
scribe plasmid transfer into cells already carrying a plasmid, and a new
segregation parameter-(7,) for loss of one plasmid type from cells with two.
Then:

Ny = %Ny = YNfN, + N’ + Nip) + (N, + N)

IYI = ¥N, +‘7N0N| +7N0N12/2—TN1 _7pN|(N2+N|2/2)+TpNu/2

Nz =¥,N, + ‘YNoNz + YN N2 = 7N, — ‘Y,Nz(Nn + Np/2) + TpNn/z

Ny = ¥V, +7’N12(N1 + N)/2 + 2‘7pN1Nz _7%;

These equations are written in three parts. The first section to the right of
the equal sign describes cell division; the second section describes dynamics
between cells with plasmids and plasmid-free cells (identical to equation 3
above); the third section describes dynamics between cells with one plasmid
and cells with two.

When cell type N,, acts as a donor, one of the two plasmids is transferred
but not both; each is equally likely to be transferred (hence the terms v,
N,N,; and v,N,N,, are divided by two). Segregation is assumed not to favor
either plasmid, so that cells' N, and N, are created equally often from N,,.
In all our plasmid models, plasmid exchanges between identical cell types
are not written into the equations because they do not cause cell transitions;
however, one can demonstrate their occurrence experimentally and assume
that they always occur.

As above, plasmid copy number is ignored. Cell type N, has some of
type 1 and some of type 2; segregation of one type means that all copies of
that plasmid are lost. Neglecting copy number at this stage represents a loss
of reality, since a cell with four copies of type 1 and one copy of type 2
would segregate quite differently from one with the opposite arrangement.
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However, tallying.copy number would add burdensome detail unnecessary
for a description of the fundamental features.

Under many circumstances, it is reasonable to ignore plasmid-free cells,
N,. In experimental populations with plasmids present and persisting, cells
without plasmids are usually not detectable, and probably have density
below 1072 of the plasmid-bearing population. This simplification will be
used in the model of transposable elements. Later I will discuss the impact
of plasmid-free cells, since in our previous work we did incorporate them
in the model.

8.2.3.2 The Transposon Model. One of the fundamental differences be-
tween our model and the earlier work by Sawyer and Hartl is that we do
not consider multiple copies of transposons on chromosomes or plasmids—
a piece of DNA either has transposons or it does not. This simplification
is acceptable because our goal was to describe the dynamics of infection, so
movement of transposons within cells was not relevant. Sawyer et al. were
interested in equilibrium copy numbers, so they had to consider intra-cell
transposition and the build-up of copy number.

The transposon model of Condit et al. (1988) is essentially a model of
two plasmids, as described above, where one of the plasmids carries the
transposon and the other does not. The only complication is that trans-
position onto the chromosome must be included. Let plasmids without a
transposon be number 1 while those with the element are number 2. Cells
with a transposon on the chromosome are designated M, while those without
are still V. Ignoring plasmid-free cells, the model requires six cell types: N,,
N,, Ny, M\, M,, and M,,. All but cell type N, carry the transposon.

Let transposition occur at a constant rate & per unit time in the popu-
lation of cells carrying the element, and excision at rate . Assuming that
transposition is replicative, then the cell transitions brought about by trans-
position are:

N, =M, (transposon on plasmid moves to chromosome);
N,,—M,, (transposon on plasmid moves to chromosome);
N;,—N, (transposon on plasmid 2 moves to other plasmid, turning it into
plasmid 2);
Ml —M, (transposon on chromosome moves to plasmid); and
M,,—M, (transposon on chromosome or on plasmid moves to other plas-
‘mid).

Other transposition events lead to.a bmld~up in copy number of the element
and are ignored. .
Excision causes the following cell transitions:

N, —N; (loss of transposon from plasmid);
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N,;—N, (loss of transposon from plasmid);

M, —N, (loss of transposon from chromosome);
M,,—N,, (loss of transposon from chromosome),
M,,—M, (loss of transposon from plasmid);
M,—N, (loss of transposon from chromosome); and
M,—M, (loss of transposon from plasmid).

In this model, it has been necessary to make assumptions about plasmid
copy number: the above transitions are based on the assumption of only
one copy of each plasmid per cell. Cell types N,, and M,, have one of both.
1t would be preferable to maintain generality and not consider copy number,
but it does not seem feasible without adding considerable complexity.

If transposition is conservative, the cell transitions caused by trans-
position must be changed. The only relevant transfer occurs between plas-
mid and chromosome, causing interchange of cell types: N,~+M, and
N,;~M,. In addition, transposition in M, acts.just like an excision event,
with either plasmid or chromosome losing its copy of the element.

To.simplify writing the equations, define a population P = (N,/2 +
M,/2 + N, + M,) as the density of all cells that are capable of donating
the transposon-bearing plasmid (plasmid 2), and likewise, Q = (N,;/2 +
M,,/2 + N, + M,) for cells donating plasmid 1. v, and ¥, are rate constants
for transfer of plasmids 1 and 2, respectively. Otherwise, the assumptions
are the same as those behind equation 4, and the resulting set of differential
equations is:

N| - \I’Nl 72N|P + TN|2/2 + ((Nl + le + Ml) .
le = ¥N,;, + v\N;Q + v.N\P — 1N, + M, — 25le AL
N, = ¥N, — 1\N,Q + 7N;,/2 + §N,; + M, — N, — 6N,
M] -‘I/Ml 72M1P+TM1J2+CM2+€M|2—6M|-CM|
Mlz - ¥YM, + ‘Yzan + 'thQ ™, + oN,; — XM, — 2eM,
Mz - ‘I’Mz - ‘)’leQ + TM12/2 + (SNZ + éMl 25M|2 - 2€M2
(%)

Equations for an eight-cell model that includes plasmid-free cells can be
found in Condit et al. (1988).

We have found two useful ways to analyze the equations. One is to use
computer simulations based on Euler approximations, varying all param-
eters systematically to assess the impact of each on solutions to the equa-
tions. The other is to consider the situation where a transposon has just
been introduced into a new population and is rare compared to the trans-
poson-free cells, N,. In this circumstance, the density of cell type N, can be
treated as constant, and products of any two of the rare cell densities can
be ignored. The set of equations is then linear and first order, and can be
solved analytically, providing one uses a chemostat scenario where total cell
density is approximately at equilibrium. Both approaches lead to the results
discussed in the next section.
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8.2.3.3 Results of the Transposon Model. We have been primarily in-
terested in the fate of transposable elements that do not carry any useful
function and so are either selectively neutral or deleterious. I return to the
alternative scenario, beneficial transposons, below. All these results refer to
chemostat models.

A replicative transposable element that is selectively neutral will invade
a population of bacterial cells, providing there are conjugative plasmids
present (Figure 8-3). In the absence of transposition (5 = 0), otherwise
identical conditions do not lead to invasion (see Figure 8-3), and if plasmid
transfer is set to zero, no invasion occurs. The same result is obtained
whether the plasmids are maintained by transfer or by benefitting their host,
as long as some p!asmld transfer occurs. When transposons are rare, their
rate of invasion is constant per capita, so that the density of transposon-
bearing cells increases exponenually (appeermg linear on a semi-log plot,
see Figure 8-3). We symbolize this invasion rate by I,, where the “0” refers
to the zero fitness effect of the element.

The rate at which a transposon invades turns out to be rather simple
to predict, at least given the seeming complexity of the model. To formulate
this prediction, it is useful to define an intuitively simple and important
concept—*plasmid turnover” (symbolized by p), which is the total proba-
bility that any given cell in a population will exchange a plasmid per unit
time. In a population without any transposon and a single plasmid type
(cell N)), the number of conjugation events per unit time (symbolized as C)
is v,(\,)3, since all conjugation events happen between cells of the same
type (these events were not included in equations 3, 4, and 5). Plasmid
turnover is C/N, or 4,N,. This is the probability per umt time that a piece
of plasmid DNA will find itself associated with a novel piece of chromo-
somal DNA, and likewise for chromosomes.

If transposition rate is much less than plasmid turnover, then the in-
vasion rate I, will exactly equal the transposition rate. Conversely, if plasmid
turnover is much less than the transposition rate, then I, will equal the
plasmid turnover rate. That is

if p«§4, then I, = p. (6)

Since p and & were defined per unit time, invasion rate here takes the same
units (time-!). This is a simple and intuitively appealing result. Invasion of
the transposable element requires that it infects new cells, which requires
two steps—transposmon and plasmid transfer. Like a chemical reaction, the
rate of invasion is controlled by the slower of the two steps on which it
depends.

The fact that two steps are necessary for invasion may not be 1mme-
diately evident. At first consideration, it might appear that once a transposon
is on a plasmid, then only plasmid transfer is necessary for invasion to
occur, as if a nontransposing element could invade by hitch-hiking on a
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FIGURE 8-3 Simulations of changes in population density, based on equation 5
in the text. All populations maintained according to chemostat dynamics so that
the total population reached an equilibrium of 1.9 X 10% cell mi-. Transposon-free
cells (N,) are at equilibrium prior to introduction of transposons at density of 10?
cell ml-', In all three runs, v, = v; = 10-° ml cell! hr'; 7 = 0.45 hr'; ¢ = 0 hr;
and there are no differences in fitness among the six cell types. Top: Transposon is
introduced on the chromosome in cell type M,, and transposition rate § = 1072,
This value for § is unrealistically high just to illustrate the invasion process; if § were
given a more realistic value (10-* or lower), the increase would be visible only after
about 10¢ hours (more than 100 years). Middle: Identical parameters, but the trans-
poson is introduced on the plasmid in cell type N,. Bottom: As above, but the
transposition rate is set to zero.

165



166  Models for the Population Dynamics of Transposabie Elements in Bacteria

plasmid. The reason this is wrong is that the plasmid population is assumed
to be at equilibrium prior to the appearance of the transposon. Therefore,
every plasmid transfer event, which adds one plasmid copy, must be
matched by a segregation event, which eliminates one copy; if this were not
true, then the number of plasmids would not be at equilibrium. If trans-
position never occurred, the transposon-bearing plasmid could not increase
in abundance, since it must segregate as often as it transfers. But by trans-
posing to the chromosome when arriving in a new cell, the element is pro-
tected against plasmid segregation. Thus transposition is necessary for the
clement to gain in frequency.

This conclusion, that invasion rate is controlled by the slower of two
critical steps, provides a basic illustration of the functioning of the model—
how a transposable element will behave in a model system of plasmids.
Several other conclusions can be drawn by extending the analysis, and are
justified further in Condit et al. (1988):

1. A conservative transposon that is selectively neutral or deleterious can
never invade.

2. Even if a cell carrying a transposon suffers a fitness cost, it may still
invade, providing the cost is not too high. Define the selective disad-
vantage as s, where ¥, = ¥,(1 — s), ¥, is the growth rate of the cell
population without transposons, and ¥, is the growth rate for all cell types
with the transposon. Then a simple conclusion can be drawn regarding
the threshold level for s: if a transposon with no fitness cost has invasion
rate I, then the same element will still invade with any fitness burden
s<l,. In fact,

I =1, —~s. ' (7)

(Actually, it is necessary to match units in order to achieve equality.
Invasion rate has been defined per unit time interval, and the s defined
here has units of “‘per generation,” so a correction for generation time is
necessary; see Condit et al. 1988.)

3. If plasmid-free cells are added to the population, then all of the above
conclusions hold, providing the term for plasmid turnover, p, is adjusted.
When plasmid-free cells, N,, are available, p = [YN N, + v, (N)}/(N, +
N)). As above, this is the total number of conjugation events divided by
the total number of cells.

In addition, I have repeated many of the analyses of transposon invasion
using an alternative to the chemostat approach described by Condit et al.
(1988). In the alternative, a small population of cells is provided with a
large amount of resource at time zero, grows exponentially until the resource
is depleted, and a small fraction of the cells are then transferred to fresh
resource. This is known as serial transfer and is a common experimental
tool for microbiologists (Atwood et al. 1951). Unlike a chemostat, bacterial
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populations under serial transfer are not at equilibrium, which is not con-
ducive to mathematical analysis of the differential equations. Nevertheless,
when I repeat simulations in a serial transfer regime, results are qualitatively
similar to those in a chemostat. Replicative transposons still invade, pro-
viding cost is not high, and conservative transposons do not. The exact
equalities in equations 6 and 7 no longer hold, however.

As with Sawyer and Hartl’s, our model was explicitly designed for direct
testing with data from real populations. Laboratory populations of E. coli,
the plasmid R100, and transposons Tn3 and Tn5 could be arranged to mimic
the invasion-when-rare scenario illustrated in Figure 8-3 (Condit 1990). We
found that the models quite successfully predicted changes in cell density
caused by plasmid transfer, but because transposition rates were so low, we
were unable to observe changes in frequency caused by transposition. That
is, although the experimental data matched theoretical predictions, the tests
of the model were not robust because transposition rate was never high
enough to play a role in population dynamics._

8.2.3.4 - Preliminary Models for the Dynamics of Beneficial Transposons.
Initially, we felt that a situation where a transposon raises the fitness of its
host was not particularly interesting. After all, any gene that raises host
fitness will invade a population when rare, whether it transposes are not.
If the fitness difference s (now s favors cells with a transposon) is much
greater than J,, then transposition would play a trivial role—invasion would
be largely caused by differential fitness. On the other hand, if s is much
lower than I, then the transposon is essentially neutral, and we return to
the conclusions above.

Recently, however, we have reconsidered scenarios with beneficial trans-
posons and decided they are not so trivial, providing we change the structure
of the model. Much of what follows is based on the model presented in
Condit and Levin (1990) whose purpose was different, but the structure of
this model has relevance for modeling transposable elements.

The problem with my initial thinking about beneficial transposons was
that it considered only whether genes within the transposable element were
beneficial, not how the act of transposition itself could have positive fitness.
If a transposon carries useful genes, then of course one anticipates its spread
into a population, but once fixed, the ability to transpose should be lost
while the genes within the element are maintained.

‘What is necessary for transposability to be maintained is a situation
where new gene combinations have a selective advantage. We modeled one
such scenario: two plasmids co-occur in a population of bacteria, each car-
rying a gene that can be beneficial to the bacteria; both of the genes are
contained within transposable elements. In addition, the two plasmids are
“incompatible,” that is, single bacterial cells cannot maintain both for long
(Novick 1987). This is modeled by having a high segregation rate, r,, among
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the cells N,,. If selection for both genes occurs simultanepusly, so that cell
type N,, has a selective advantage over N, and N,, then a population of
cells in which one of the fransposons has moved between plasmids (or onto
the chromosome) will invade. The reason is the instability of the plasmids.
Cell type N,, will have the highest growth rate, but it will also lose plasmids
at a high rate, creating progeny with low fitness. Cells with both transposons
(and hence both useful genes) on the same plasmid do not suffer from this
instability, We proved using simulations that the invasion rate of the new
cell type is equal to the segregation rate of the two plasmids.

This situation leads to a selective advantage for transposability based
on the unstable inheritance of separate pieces of DNA in the same cell.
However, once the transposons find themselves in a new arrangement, the
selective advantage to transposition is lost. The benefit to the transposon
has only been temporary, unless new circumstances constantly adjust fit-
nesses and continually favor gene rearrangements. The problem of main-
taining transposability thus appears to be the same as the general problem
of the evolution of recombination and sex (Feldman et al. 1980). Clearly,
further theoretical work is needed in this area.

8.2.3.5 Limitations of the Models Describing Dynamics. Some of the as-
sumptions underlying the model have been mentioned already, but certain
ones deserve particular attention before assessing the theoretical conclu-
sions:

1. Populations were assumed to be at equilibrium before the transposon
was introduced. If a plasmid carrying a transposon were introduced into
a population formerly without that plasmid, the transposon could be
swept to fixation by plasmid transfer alone. Perhaps nonequilibrium sys-
tems, with plasmids frequently invading and going extinct, offer a better
avenue for invasion of selectively neutral transposons. In Condit et al.
(1988), we argue that transposons are no more likely to invade non-
equilibrium populations than equilibrium populations, but the idea has
not been tested rigorously.

2. We did not consider whether transposons affect plasmids in any way. If
a transposon is deleterious to its host, but somehow benefits the plasmid
it is on (relative to other plasmids), its ability to invade would improve,
but we have not quantitatively assessed this situation.

3. Our models explicitly model populations in liquid culture. Although I
do not anticipate that surface populations would exhibit dramatically
different behavior, the possibility should be considered further.



8.3 Conclusions 169

8.3 CONCLUSIONS .

8.3.1 Explanations for the Invasion and Maintenance
of Transposons

The models of Condit et al. (1988) and Condit and Levin (1990) represent
standard population genetic approaches. We sought to understand the basic
dynamics of genes that are able to transpose between pieces of DNA in
simple model systems. Obviously, the model systems do not reflect reality
exactly, but it is necessary to understand dynamics in simple systems before
considering more complicated real populations. What do the models show?

It is plausible for transposons to be “parasitic DNA.” This had been
taken as a given in bacterial populations (Campbell 1981), but never proven.
However, as Condit et al. (1988) argue, there are several reasons to doubt
whether the parasitic DNA hypothesis can be generally applicable to bac-
terial transposons. The problem is twofold: first, bacteria are almost asexual,
since the rate of plasmid turnover is usually quite low (Levin et al. 1979;
Freter et al. 1983); second, transposition rate is extremely low for nearly all
bacterial transposons (Foster et al. 1981a; Peterson et al. 1982; lida et al.
1983; Meyer et al. 1983; Schmidt and Klopfer-Kaul 1984). Both rates are
critical for invasion as a parasite, and since both are so low, it must be a
rare event for a transposon to establish itself in a new bacterial strain without
benefitting its host.

The above statements about magnitudes of transposition and plasmid
turnover are based on very little data (at least for natural populations), and
they should be considered provisional. Also, one should consider trans-
duction as an alternative gene transfer mechanism, so our conclusion in the
previous paragraph should be debated. Still, it does not seem plausible that
transposons have become so widespread as parasitic DNA.

In contrast, Sawyer et al. (1987) concluded that their models suggest
*“. .. amoderaie to strong detrimental effect of copy number [of transposable
elements] on fitness. . ..” for most insertion elements, But their group did
not examine models for beneficial transposons, and as they readily ac-
knowledge, their conclusions were not strong. Clearly, more data about the
dynamics of transposable elements in natural bacterial populations are
needed to establish whether some are acting as parasitic DNA.

Models that demonstrate how transposition can be selectively advan-
tageous are available (Condit and Levin 1990), but they do not provide a
compelling general argument for the maintenance of transposability. Al-
though transposition can have a transient advantage, the theory ends there.
How can the ability to move to new sites be continuously selected for? More
theoretical work is needed in this area.

8.3.2 Applications of Models to Risk Assessment

On the basis of our study of the dynamics of the spread of transposons, and
information about how low the critical rate parameters are, we predict that
engineered genes released into bacterial communities will never become
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established in novel populations as long as they do not raise fitness of any
strain they inhabit. Genes will transfer into new cells, but without a selective
advantage these transfer events will be rare and isolated and will not lead
to fixation of the gene at a new site.

Nevertheless, our models for beneficial transposons show that if a trans-
position event creates a new cell that has higher fitness than its progenitors,
then a new strain carrying a rearrangement can become fixed very rapidly.
This raises an important caution for risk assessment. No matter how rare
genetic rearrangements might be, they can readily lead to new strains if the
selective conditions are right.

It is debatable whether general predictions like this are useful for risk
assessment. One should probably make assessments on a case-by-case basis,
and it is possible to apply models to individual cases. In Condit (1988), I
describe how mathematical models of bacterial populations might be used
to make predictions about the fate of engineered bacteria released into the
environment. Our models for the dynamics of transposon populations could
be used to make such predictions. Given parameters for transposition, plas-
mid transfer, and selective coefficients, one could try to predict the fate of
a particular engineered gene released into a particular bacterial population.

Although this might be a goal for modeling work in risk assessment,
quantitative predictions based on detailed models are unlikely to be accurate
enough as a basis for important decisions, at least in the near future. Instead,
I see models as continuing to be .a basic tool for evaluating the processes
that control the abundance and distribution of transposable elements in
natural populations of bacteria. This basic knowledge is crucial for makmg
decisions about manipulating bacterial populations.
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