Changing tree populations Neutral and non-neutral change

Richard Condit¹

Smithsonian Tropical Research Institute

International Symposium Climate Change and Forest Biodiversity Conservation CTFS-SIGEO & CForBio Institute of Botany, Beijing July 2011

ション 人口 アメリア メリア ションシン

ション 人口 アメリア メリア ションシン

- Do populations of tree species fluctuate stochastically (neutrally)?
- Are populations tightly regulated and more stable than neutral?
- Are population fluctuations more than random (environmental variation)?

Tracking populations of tree species long-term A BCI plot milestone BCI over 30 years

Modeling rates of population change Stable or not Common species Rare species

3 CTFS-SIGEO-CForBio plot network Stability and fluctuations in different forests

4 Conclusions

ヘロト ヘロト ヘビト ヘビト

Survivorship of trees tagged in 1982 ($\geq 1 \text{ cm dbh}$)

Survivorship of trees tagged in 1982 ($\geq 1 \text{ cm dbh}$)

Survivorship of trees tagged in 1982 ($\geq 1 \text{ cm dbh}$)

Survivorship of trees tagged in 1982 ($\geq 1 \text{ cm dbh}$)

Survivorship of trees tagged in 1982 ($\geq 1 \text{ cm dbh}$)

Survivorship of trees tagged in 1982 ($\geq 1 \text{ cm dbh}$)

Survivorship of trees tagged in 1982 ($\geq 1 \text{ cm dbh}$)

Survivorship of trees tagged in 1982 ($\geq 1 \text{ cm dbh}$)

Survivorship of trees tagged in 1982 ($\geq 1 \text{ cm dbh}$)

Number of living trees since $1982 (\geq 1 \text{ cm dbh})$

Number of living trees since $1982 (\geq 1 \text{ cm dbh})$

Number of living trees since $1982 (\geq 1 \text{ cm dbh})$

Number of living trees since $1982 (\geq 1 \text{ cm dbh})$

Number of living trees since $1982 (\geq 1 \text{ cm dbh})$

Number of living trees since $1982 (\geq 1 \text{ cm dbh})$

Number of living trees since $1982 (\geq 1 \text{ cm dbh})$

Number of living trees since $1982 (\geq 1 \text{ cm dbh})$

Discounting stochastic demography

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Decomposing change across the forest into the individual species

Understanding a diversity of mechanisms

Population changes in common species 30 years

◆□▶ ◆課▶ ◆注▶ ◆注▶ ─注 − のへで

Population changes in rare species 30 years

year

<□> <@> < E> < E> = E = のへで

The Data

・ロト・日本・エート・ヨー うらく

spcode	N1	N2	time	little r	date1	date2
acacme	22	49	5.0	0.1611	01Jun2005	22May2010
acaldi	853	1146	5.0	0.0595	17Jun2005	02Jun2010
acalma	52	53	5.0	0.0038	25Mar2005	26Mar2010
ade1tr	145	146	5.0	0.0014	13Jun2005	29May2010
aegipa	46	40	5.0	-0.0281	02May2005	21Apr2010
alchco	229	317	5.0	0.0656	18Jun2005	03Jun2010
alchla	2	1	5.0	-0.1382	17Jan2005	22Jan2010

... etc. for 326 species

...

*
$$r = \frac{1}{time} \left(\ln N_2 - \ln N_1 \right)$$

Histogram of rate of population change (r)

◆ロト ◆聞 と ◆臣 と ◆臣 と ○臣 … のへで

Discounting stochastic demography

Separating stochastic variance from environmental¹ variance in population sizes

- Stochastic demography (random fluctuations) must be discounted
- Fluctuations that remain are due to environmental change
- Species respond differently to change

¹any environmental feature that might vary (climate, predators, competitors...) = 🤊 🤉

<□> <@> < E> < E> = E = のへで

Through 30 years

ション (日本) (日本) (日本) (日本) (日本)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

rate of population change

rate of population change

rate of population change

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ① ● ● ●

rate of population change

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

rate of population change

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣・の�?

Through 30 years

・ロト・(個)ト・(目)ト・目、 のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

rate of population change

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

rate of population change

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

rate of population change

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ① ● ● ●

ション 人口 アメリア メリア ションシン

How do other forests compare to BCI?

The CTFS-SIGEO-CForBio plot network and the NSF-NSFC Changbai working group

- Assemble data in common format
- Encourage broad comparisons

SIGEO-CTFS-CForBio: Forest censuses following common methods

33 completed plots have data in a common database format on one of 4 servers

- -- 3,802,654 trees (ie 3.80x10⁶)
- -- 9,073,531 measurements (ie 9.07x10⁶) in 89 plot censuses

Korup, Cameroon (compared to BCI)

Histogram of rate of population change (r)

Frequency

Rate of population change

Pasoh, Malaysia (compared to BCI)

Histogram of rate of population change (r)

Fushan, Taiwan (compared to BCI)

Histogram of rate of population change (r)

◆□▶ ◆課▶ ◆注▶ ◆注▶ ─注 − のへで

Palanan, Philippines (compared to BCI)

Rate of population change

Frequency

Conclusions

Fluctuations in abundance of tree species

• Exceed fluctuations in the entire forest

▲□▶▲□▶▲□▶▲□▶ = のへの

・ロト・日本・日本・日本・日本・日本・日本

- Exceed fluctuations in the entire forest
- Exceed demographic stochasticity in all forests studied

ション 人口 アメリア メリア ションシン

- Exceed fluctuations in the entire forest
- Exceed demographic stochasticity in all forests studied
- Some variation easily explained by external drivers

drought typhoon fire

ション 人口 アメリア メリア ションシン

- Exceed fluctuations in the entire forest
- Exceed demographic stochasticity in all forests studied
- Some variation easily explained by external drivers

drought typhoon fire

• Underlying variation and long-term shifts not yet explained

ション 人口 アメリア メリア ションシン

- Exceed fluctuations in the entire forest
- Exceed demographic stochasticity in all forests studied
- Some variation easily explained by external drivers

drought typhoon fire

- Underlying variation and long-term shifts not yet explained
- Rare species at BCI decline in abundance more often than average, but not consistently

Conclusions

Fluctuations in abundance of tree species

Fluctuations in species abundances greatly exceed fluctuations in the entire forest

Exceed fluctuations in the entire forest Exceed demographic stochasticity in all forests studied Some variation easily explained by external drivers drought typhoon

Underlying variation and long-term shifts not yet explained Rare species at BCI decline in abundance more often than average, but not consistently

Conclusions BCI Plot 30 years

Steve Hubbell Robin Foster