Changing tree populations

Neutral and non-neutral change

Richard Condit ${ }^{1}$

Smithsonian Tropical Research Institute

International Symposium
Climate Change and Forest Biodiversity Conservation
CTFS-SIGEO \& CForBio
Institute of Botany, Beijing
July 2011

Ecological theory

- Do populations of tree species fluctuate stochastically (neutrally)?
- Are populations tightly regulated and more stable than neutral?
- Are population fluctuations more than random (environmental variation)?
(1) Tracking populations of tree species long-term

A BCI plot milestone
BCI over 30 years
(2) Modeling rates of population change

Stable or not
Common species
Rare species
(3) CTFS-SIGEO-CForBio plot network

Stability and fluctuations in different forests
(4) Conclusions

A BCI milestone

Survivorship of trees tagged in 1982 ($\geq 1 \mathrm{~cm} \mathrm{dbh}$)

A BCI milestone

Survivorship of trees tagged in 1982 ($\geq 1 \mathrm{~cm} \mathrm{dbh}$)

A BCI milestone

Survivorship of trees tagged in $1982(\geq 1 \mathrm{~cm} \mathrm{dbh})$

A BCI milestone

Survivorship of trees tagged in 1982 ($\geq 1 \mathrm{~cm} \mathrm{dbh}$)

A BCI milestone

Survivorship of trees tagged in $1982(\geq 1 \mathrm{~cm} \mathrm{dbh})$

A BCI milestone

Survivorship of trees tagged in $1982(\geq 1 \mathrm{~cm} \mathrm{dbh})$

A BCI milestone

Survivorship of trees tagged in $1982(\geq 1 \mathrm{~cm} \mathrm{dbh})$

A BCI milestone

Survivorship of trees tagged in $1982(\geq 1 \mathrm{~cm} \mathrm{dbh})$

A BCI milestone

Survivorship of trees tagged in $1982(\geq 1 \mathrm{~cm} \mathrm{dbh})$

Fluctuation abundance of the entire forest

Number of living trees since $1982(\geq 1 \mathrm{~cm} \mathrm{dbh})$

Fluctuation abundance of the entire forest

Number of living trees since 1982 ($\geq 1 \mathrm{~cm} \mathrm{dbh}$)

Fluctuation abundance of the entire forest

Number of living trees since 1982 ($\geq 1 \mathrm{~cm} \mathrm{dbh}$)

Fluctuation abundance of the entire forest

Number of living trees since $1982(\geq 1 \mathrm{~cm} \mathrm{dbh})$

Fluctuation abundance of the entire forest

Number of living trees since 1982 ($\geq 1 \mathrm{~cm} \mathrm{dbh}$)

Fluctuation abundance of the entire forest

Number of living trees since 1982 ($\geq 1 \mathrm{~cm} \mathrm{dbh}$)

Fluctuation abundance of the entire forest

Number of living trees since $1982(\geq 1 \mathrm{~cm} \mathrm{dbh})$

Fluctuation abundance of the entire forest

Number of living trees since $1982(\geq 1 \mathrm{~cm} \mathrm{dbh})$

Modeling rates of population change

Discounting stochastic demography

Decomposing change across the forest into the individual species
Understanding a diversity of mechanisms

Population changes in common species 30 years

Population changes in rare species 30 years

spcode	N 1	N 2	time	little r	date1	date2
acacme	22	49	5.0	0.1611	01Jun2005	22May2010
acaldi	853	1146	5.0	0.0595	17Jun2005	02Jun2010
acalma	52	53	5.0	0.0038	25Mar2005	26Mar2010
ade1tr	145	146	5.0	0.0014	13Jun2005	29May2010
aegipa	46	40	5.0	-0.0281	02May2005	21Apr2010
alchco	229	317	5.0	0.0656	18Jun2005	03Jun2010
alchla	2	1	5.0	-0.1382	17Jan2005	22Jan2010

etc. for 326 species

* $r=\frac{1}{\text { time }}\left(\ln N_{2}-\ln N_{1}\right)$

Modeling rates of population change

Histogram of rate of population change (r)

Modeling rates of population change

Discounting stochastic demography

Separating stochastic variance from environmental ${ }^{1}$ variance in population sizes

- Stochastic demography (random fluctuations) must be discounted
- Fluctuations that remain are due to environmental change
- Species respond differently to change

[^0] \equiv

Modeling rates of population change

Histogram of rate of population change (r)

Fluctuations in abundance across the community

Through 30 years

Fluctuations in abundance across the community

Fluctuations in abundance across the community

rate of population change

Fluctuations in abundance across the community

Fluctuations in abundance across the community

Fluctuations in rare (red) and common (blue) species

Through 30 years

Fluctuations in rare (red) and common (blue) species

Fluctuations in rare (red) and common (blue) species

Fluctuations in rare (red) and common (blue) species

rate of population change

Fluctuations in rare (red) and common (blue) species

rate of population change

Fluctuations in rare (red) and common (blue) species

rate of population change

Fluctuations in rare (red) and common (blue) species

rate of population change

Other forest

How do other forests compare to BCI?
The CTFS-SIGEO-CForBio plot network and the NSF-NSFC
Changbai working group

- Assemble data in common format
- Encourage broad comparisons

SIGEO-CTFS-CForBio: Forest censuses following common methods

33 completed plots have data in a common database format on one of 4 servers
-- 3,802,654 trees (ie 3.80×10^{6})
-- 9,073,531 measurements (ie 9.07×10^{6}) in 89 plot censuses

Korup, Cameroon (compared to BCI)

Histogram of rate of population change (r)

Pasoh, Malaysia (compared to BCI)

Histogram of rate of population change (r)

Fushan, Taiwan (compared to BCI)

Histogram of rate of population change (r)

Palanan, Philippines (compared to BCI)

Histogram of rate of population change (r)

Fluctuations in abundance of tree species

- Exceed fluctuations in the entire forest

Fluctuations in abundance of tree species

- Exceed fluctuations in the entire forest
- Exceed demographic stochasticity in all forests studied

Fluctuations in abundance of tree species

- Exceed fluctuations in the entire forest
- Exceed demographic stochasticity in all forests studied
- Some variation easily explained by external drivers drought
typhoon
fire

Conclusions

Fluctuations in abundance of tree species

- Exceed fluctuations in the entire forest
- Exceed demographic stochasticity in all forests studied
- Some variation easily explained by external drivers
drought
typhoon
fire
- Underlying variation and long-term shifts not yet explained

Conclusions

Fluctuations in abundance of tree species

- Exceed fluctuations in the entire forest
- Exceed demographic stochasticity in all forests studied
- Some variation easily explained by external drivers
drought
typhoon
fire
- Underlying variation and long-term shifts not yet explained
- Rare species at BCI decline in abundance more often than average, but not consistently

Conclusions

Fluctuations in abundance of tree species

Fluctuations inspecies abundances greatly exceed fluctuations in the entire forest

Exceedfluctuations in the entire forest
Exceed demographic stochasticity in all forests studied
Some variation easily explained by external drivers drought
typhoon
: 3 fire
Underlying variation and leng-term shifts not yet explained Rare species at BCFdecline in abundance more often than average, but not consistently

Conclusions

[^0]: ${ }^{1}$ any environmental feature that might vary (climate, predators, competitors...)

