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ABSTRACT. The abundance of all tree and shrub species has been monitored for eight years in
a 50 ha census plot in tropical moist forest in central Panama. Here we examine population trends
of the 219 most numerous species in the plot, assessing the impact of a long-term drying trend.
Population change was calculated as the mean rate of increase (or decrease) over eight years,
considering either all stems =10 mm diameter at breast height (dbh) or just stems =100 mm dbh.
For stems =10 mm, 40% of the species had mean growth rates <1% per year (either increasing
or decreasing) and 12% had changes =5% per year. For stems =100 mm, the figures were 38%
and 8%.

Species that specialize on the slopes of the plot, a moist microhabitat relative to the plateau,
suffered significantly more declines in abundance than species that did not prefer slopes (stems
=10 mm dbh). This pattern was due entirely to species of small stature: 91% of treelets and shrubs
that were slope-specialists declined in abundance, but just 19% of non-slope treelets and shrubs
declined. Among larger trees, slope and non-slope species fared equally. For stems =100 mm dbh,
the slope effect vanished because there were few shrubs and treelets with stems =100 mm dbh.
Another edaphic guild of species, those occurring preferentially in a small swamp in the centre of
the plot, were no more likely to decline in abundance than non-swamp species, regardless of growth
form. Species that preferentially colonize canopy gaps in the plot were slightly more likely to
decrease in abundance than non-colonizing species (only for stems =10 mm dbh, not =100 mm).
Despite this overall trend, however, several colonizing species had the most rapidly increasing
populations in the plot.

The impact of a 25-year drying trend and an associated increase in the severity of the 4-month
dry season is having an obvious impact on the BCI forest. At least 16 species of shrubs and treelets
with affinities for moist microhabitats are headed for extinction in the plot. Presumably, these
species invaded the forest during a wetter period prior to 1966. A severe drought of 1983 that
caused unusually high tree mortality contributed to this trend, and may also have been responsible
for sharp increases in abundance of a few gap-colonizers because it temporarily opened the forest
canopy. The BCI forest is remarkably sensitive to a subtle climatic shift, yet we do not know
whether this is typical for tropical forests because no other large-scale censuses exist for comparison.

KEY WORDS: demography. population dynamics, tropical populations

INTRODUCTION

The myth that tropical climates provide a stable environment for tropical forest
organisms has long been buried. We know that annual shifts in moisture avail-
ability can stress vegetation and limit the distribution of many species
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(Hartshorn 1992, Wright 1992). Now, thanks to long-term weather records kept
by the Panama Canal Commission, we also know that the vegetation of Barro
Colorado Island (BCI) must face supra-annual shifts in moisture availability
(Windsor 1990, Windsor et al. 1990). Total precipitation at BCI underwent an
abrupt decline around 1965, averaging 2740 mm prior to 1965 and 2430 mm
since, paralleling a worldwide reduction in rainfall in the northern tropics
(Bradley et al. 1987, Diaz et al. 1989). Moreover, associated with a strong El
Nifio event, the annual dry season of 1983 was unusually long and severe,
causing elevated tree mortality (Condit et al. 1992b, Condit et al. 1995, Leigh
et al. 1990). The 1983 drought and the long-term drop in rainfall are
undoubtedly part of the same phenomenon, as the frequency of dry seasons (15
December to 15 April) receiving less than 100 mm of rain increased from once
every 6.2 years prior to 1965 to once every 3.5 years since (Windsor 1990).

How does the composition of a tropical forest change when precipitation
patterns shift? Unusual droughts and variation in rainfall are recognized more
and more as important in tropical forests (Foster 1982a, Hartshorn 1992, Leigh
et al. 1990, Woods 1989), but we know little about how populations of individual
species change as a result. Certainly we know that past climate changes have
led to shifts in species’ distributions (Bush & Colinvaux 1990, Bush et a/. 1990,
Hamilton & Taylor 1991, Sukumar e al. 1993), and in temperate forests,
detailed descriptions of range shifts that accompany past climate changes are
so well documented (Davis 1981, Delcourt & Delcourt, 1987) that precise pre-
dictions on the impact of future climate scenarios can be made (Botkin & Nisbet
1992, Dale & Franklin 1989, Franklin et al. 1992, Overpeck et al. 1990, Pastor &
Post 1988, Shugart & Smith 1992, Solomon 1986, Urban et al. 1993). The
species-specific information behind these predictions is not available for most
tropical forests. Only for the Luquillo forest in Puerto Rico has a species-specific
model been used to predict the impact of climate change; O’Brien et al. (1992)
assessed the potential impact of increasing hurricane frequency.

To gather information on many individual species of tropical trees in one
community, we established a large-scale and long-term population survey of
forest at Barro Colorado Island in Panama. In order to include substantive
information on populations of many species, a large plot was mapped: 50 ha of
forest, with all stems above 10 mm in diameter included (Condit 1995, Hub-
bell & Foster 1983). This dataset provides detailed information on change in
forest composition and its relation to climate change. Similar large plots in
natural forest are now being censused in India, Malaysia, Thailand, Sri Lanka,
Puerto Rico, Ecuador, Cameroon and Zaire (Condit 1995, Manokaran et al.
1992, Sukumar et al. 1992, Zimmerman et al. 1994), so we will soon be able to
make a worldwide assessment on the lability of the species composition of trop-
ical forests.

Here we provide population estimates for 313 species of tropical trees found
in the 50 ha plot in Panama between 1982 and 1990. We address specific hypo-
theses about how the community is changing, in particular, how it might be
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affected by long-term reduction in rainfall (Condit et al. 1992b, Hubbell &
Foster 1990a, 1992). First, we consider species whose distributions within the
plot are associated with moist microhabitats: a seasonal swamp and the moder-
ately sloping terrain that drops off from the plateau in the centre of the plot
(Becker et al. 1988, Hubbell & Foster 1983, 1986a). These areas remain wet
throughout most dry seasons because a basalt cap below the plateau accumu-
lates water during the wet season and drains slowly into the swamp and slopes
throughout the dry season. Our prediction is that species associated with the
moist microsites should be especially sensitive to the overall drying trend and
will have suffered disproportionate losses in population.

In addition, we consider population changes of species that preferentially
colonize light gaps within the forest. There are two different predictions about
colonizing species. First, Hubbell & Foster (1990a, 1992) suggested that the
plot is undergoing a slow loss of weedy species, because the region just north
of the plot (plus 2 ha within the plot) was cleared of forest about 90 years ago,
and has since regrown. Colonizing species probably gained abundance within
the old forest because of their large populations just outside, and are now
declining. If this is the case, we should be able to detect disporportionate popu-
lation declines among colonizing species. The second prediction on colonizers
is just the opposite, and is based on the observation that the drought opened
the forest canopy briefly during 1983 (Becker & Smith 1990). With more light
reaching the ground, colonizing species should increase in abundance. Popula-
tion changes of species preferring gaps can tell us which of the potentially
opposing forces is more important.

MATERIALS AND METHODS

Study site

Barro Colorado (BCI) is a 1500 ha island that was a hilltop until the Panama
Canal was finished in 1914. The island is part of the Barro Colorado Nature
Monument and has been operated as a research reserve since 1923. It is entirely
forested, most in old-growth forest with no signs of human disturbance for over
500 years: 48 ha of the 50 ha plot are in old-growth, with 2 ha in an area cleared
until about 1900 as part of a French settlement. Temperatures are uniform
year-round at BCI, but rainfall is seasonal, with almost none falling between
mid-December and mid-April. Details on climate, flora and fauna can be found

in Croat (1978) and Leigh et al. (1982).

Census

A 50 ha plot on the top of the island was fully censused in 1981-1983, 1985
and 1990 (Condit et al. 1992a,b, 1993a,b, Hubbell & Foster 1983, 1986a,b,
1987, 1990a,b, 1992); we refer to the first census, which lasted two years, as
the 1982 census. All free-standing, woody stems =10 mm diameter at breast
height (dbh) were identified, tagged and mapped. The diameter of each stem
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was measured at breast height (1.3 m) unless there were irregularities in the
trunk there, in which case the measurement was taken at the nearest point
downward where the stem was cylindrical. Dbhs of buttressed trees were taken
above the buttresses. There were about 242,000 living stems in each census
(Hubbell & Foster 1990a), and 305,875 stems over all three censuses; 28 have
not been identified to species. A total of 313 species have been identified: 304,
306 and 303 in successive censuses. (Three new species have been added since
Condit et al. 1992b, all rare plants that had been misidentified as more common
species.) Included in the list of 313 is a single tree that appeared to be a hybrid
between Apeiba membranacea and A. tibourbou, and two distinct varieties of Swartzia
simplex (Croat 1978).

Analyses

Species included. Abundances for all 313 species are reported. Species’ names
match those from Croat (1978) and D’Arcy (1987), except for species which
were discovered, or whose names have been changed, since. An Appendix lists
all cases where names do not match those found in Croat (1978) or D’Arcy
(1987), and allows any species listed here to be located in those floras or in our
previous publications on the 50 ha plot. Authorities for all species can be found
via these references.

Tests of hypotheses about changes in abundance included only those species
that had at least 20 individuals 210 mm dbh in at least one of the censuses.
We used this cutoff because large percentage changes in abundance of very rare
species could be caused by minor, chance events. Four species of Bactris palms
were also eliminated from analyses because we changed methods for counting
individuals of these species. This left 219 species for analyses of all stems
=10 mm dbh. Analyses were then repeated for changes in the number of indi-
viduals =100 mm dbh, including the 136 species that had at least 20 stems in
at least one census. We included an analysis with this larger cutoff because

many other studies of tropical forest use the 100 mm limit (Phillips & Gentry
1994, Phillips e al. 1994).

Shecies characteristics. We analysed changes in abundance as they correlated with
three species characteristics — growth form, moisture preference and tendency
to recruit into light gaps. Species were divided into four growth forms — large
trees (=20 m tall), mid-sized trees (10-20 m), treelets (4—10 m) and shrubs (1-
4 m) — based on the maximum height attained at BCI (Hubbell & Foster
1986a). Moisture regime was defined using the slopes in the 50 ha plot, which
have higher soil moisture content during the dry season than the plateau above
them (Becker ez al. 1988), and the swamp, which is flooded throughout the wet
season and remains moist in the dry season (Hubbell & Foster 1986a).

Many species have distributions clearly demarcated by the slopes and the
swamp (Hubbell & Foster 1986a), and we calculated the density of all species
in the different habitats (unpublished data). We used the ratio of density on
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the slopes (all 20 m X 20 m quadrats inclined =7°) to density on the lower part
of the plateau (quadrats with slope <7° and elevation <152 m, excluding the
swamp) as an index of ‘slope-specialization’, and the ratio of density in the
swamp (all 20 m X 20 m quadrats holding standing water through most of the
wet season) to density on the lower plateau as an index for ‘swamp-
specialization’. We considered ‘slope-specialists’ and ‘swamp-specialists’ species
with ratios =1.5; this cutoff was chosen because chi-squared tests showed that
nearly all higher ratios were significantly different from 1.0 (P<<0.01), while
most below did not (unpublished data). This index was preferable to a definition
based on statistical significance, because the latter is sensitive to sample size.
Finally, as a ‘colonizing index’ for each species, we used the fraction of recruits
in light gaps given in Welden et al. (1991): Hubbell & Foster (1986b) used a
similar but not identical ‘index of heliophily’. Colonizers were defined as those
species with an index =30; again, this corresponds roughly with a statistically
significant preference for recruiting in gaps (Welden et al. 1991) but does not
depend on sample size. Most colonizers are probably ‘pioneers’ as defined by
Swaine & Whitmore (1988), but they emphasized seed germination character-
istics, which we do not consider here. Species for which information was lacking
were omitted from all analyses requiring that information. The slope and swamp
indices were calculated for all but 27 of the very rare species, but the colonizing
index was available for only the 156 species listed in Welden et al. (1991).

Statistical tests. In order to determine whether certain groups of species suffered
disproportionate losses, the number of species that increased or decreased in
abundance between 1982 and 1990 was tallied as a function of the four categor-
ical variables. For statistical tests, a standard ANOVA was not possible because
the design was unbalanced, with many empty cells. Instead, chi-squared tests
were used on each of the variables: for example, a 2 X2 contingency table for
slope-specialization category and for population change provided a chi-squared
statistic with one degree of freedom. To determine effects of each variable separ-
ately, we proceeded as follows. Swamp effect was assessed by contingency tables
for swamp and non-swamp species; since swamp status was not associated with
colonizing nor slope status, the latter two categories were simply ignored when
swamp effect was tested. But slope and colonizing variables were associated —
there were fewer slope-colonizer species than expected by chance — so we segreg-
ated species simultaneously by both categories. All tests were carried out on
the four growth forms separately.

For each species, we calculated the annualized rate of population change (r)
using a standard model of exponential population growth:

N, —in N,
t

where N, and N, are population sizes at time t and time 0 and /z means the
natural logarithm. The time interval, t, for each species was defined as the
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arithmetic mean time elapsed between censuses for individuals of that species
(based on the census data of each 20 m X 20 m quadrat in the plot).

Earlier publications

Hubbell & Foster (1990a, 1992) described population changes based on the
1982-1985 interval, and Condit e al. (1992b) updated this with 1990 data, but
this is the first presentation on abundance for all 313 species. Discrepancies
between the numbers reported here and those from earlier reports are slight
and are due solely to corrections of old errors. Since this is an on-going process,
future reports might give figures slightly different from those reported here.

Access to data

We hope that the table of abundances for 313 species provided here will be
useful for many future studies, and we will provide computer versions of the
table to anyone interested. Please send us a diskette and indicate preferred
formats.

RESULTS

Changes in abundance for stems =10 mm dbh

Of the 219 more common species considered here, 105 had increases in stem
number between 1982 and 1990, 108 had decreases and six did not change. For
all 313 species in the plot, 136 increased, 154 decreased and 23 did not change.
As previously noted (Condit ef al. 1992b, Hubbell & Foster 1990a, 1992), rare
species — in this case the 94 having fewer than 20 stems in all censuses —
suffered proportionally more declines than common species. Table 1 gives the
abundance in all three censuses for all 313 species.

Many populations did not change by much (Figure 1). Of 219 species, 88
(40%) had population changes <1% per year between 1982 and 1990. But
some species had dramatic changes in abundance: 27 species (12%) changed
at rates more than 5% per year, 18 declining and nine increasing (Table 2).
Some common species underwent substantial declines. Poulsenia armata fell from
3430 to 2126 stems, and Acalypha diversifolia from 1568 to 827. The most rapid
rate of decline was Piper aequale, which had 219 stems in 1982 and 83 in 1990
(Table 2). On the other hand, the population of Palicourea guianensis rose from
377 to 1475 stems, while the much less common Psychotria graciflora had the
biggest rate of increase, from 10 to 44 stems over eight years (Table 2). The
mean rate of change for the 219 species was —0.29% per year, while the mean
rate of absolute change was 2.25% (the mean of the absolute values of rates of
change).

Changes in abundance for stems =100 mm dbh

The range of population change among larger stems was no different than
for smaller (Figure 1B). Of the 136 species considered, 66 increased in abund-
ance from 1982 to 1990, 61 decreased and seven stayed the same. Fifty-one
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Figure 1. Distribution of population growth rates. The ‘colonizer’ category includes all colonizing species
that were not slope-specialists, and the ‘slope’ category includes slope species that were non-colonizing;
‘slope-colonizers’ are the four specializing in both areas. ‘Other’ includes all species that were neither slope
nor colonizing plus all species that were missing information on one or both categories. (A) Rate of change
of populations of stems =10 mm dbh, including 219 species (see text). (B) Rate of change of populations of
stems =100 mm dbh, including 136 species (see text).
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Table 2. Species whose population of stems =10 mm changed at a rate =5% per year. The four columns
of species characteristics are the same as those given in Table 1 (growth form, colonizing, swamp and slope
status). Species are ordered from those with the fastest shrinking populations to the fastest growing; the line
separates growing from shrinking populations.

Population Rate of population change
Species G C W S 1982 1990  1982-1985 1985-1990 1982-1990
Piper aequale S n =n S 219 83 —0.0984¢  —0.1223 —0.1131
Piper culebranum S w S 120 33 —0.2036  —0.0391  —0.0992
Chamaedorea tepejilote S n S 32 16 —0.1128  —0.0600  —0.0803
Cestrum megalophyllum S w S 309 157 —0.0769  —0.0783  —0.0777
Hampea appendiculata M ... n n 76 40 —0.1363  —0.0388  —0.0760
Acalypha diversifolia S C W n 1568 827 —0.0742  —0.0717  —0.0727
Acalyphya macrostachya U C n n 80 45 —0.0626  —0.0762  —0.0714
Conostegia bracteata S n W S 391 209 —0.0931 —0.0563  —0.0711
Piper cordulatum S n n n 3149 1777 0.0545  —0.1407  —0.0693
Turpinia occidentalis T n n 153 85 —0.0937 —0.0539  —0.0690
Piper arboreum Uu ... n S 107 60 —0.0798  —0.0624  —0.0690
Senna dariensis S S n n 205 116 —0.1171 —0.0328  —0.0657
Solanum hayesii M C n S 125 77 —0.1121 —0.0273  —0.0582
Poulsenia armata T n n S 3430 2126 —0.0703  —0.0441 —0.0545
Piper perlasense S n n S 110 68 0.0162  —0.1029  —0.0529
Erythrina costaricana U n S 289 185 —0.0622  —0.0464 —0.0525
Trema micrantha M n n 32 21 —0.1167  —0.0172  —-0.0519
Olmedia aspera U n n S 442 279 —0.043¢  —0.0564 —0.0510
Chrysophyllum cainito T C W n 70 109 0.0399 0.0579 0.0510
Chrysophyllum argenteum T C n n 423 683 0.0366 0.0681 0.0560
Spondias mombin T C W n 63 101 0.0207 0.0785 0.0575
Croton billbergianus U C W n 620 1012 —0.0005 0.0944 0.0590
Miconia argentea M C W n 331 902 0.0764 0.0542 0.0626
Cupania refescens T n W n 35 96 0.0775 0.0578 0.0654
Annona spraguei M C n n 35 143 0.0680 0.1328 0.1082
Palicourea guianensis S C w n 3717 1475 0.1861 0.1533 0.1654
Psychotria graciliflora S W n 10 44 0.1231 0.2176 0.1853

(38%) changed by <1% per year, and 11 (8%) changed by more than 5% per
year (eight of the latter were declines and three increases). The fastest rate of
change in the larger size class was Inga acuminata, which increased from 11 to
20 stems; a more common species increasing nearly as rapidly was Xylopia
macrantha, whose population rose from 79 to 128 stems. The greatest decline
was in Solanum hayesii, which had 40 stems in 1982 but just 13 in 1990. A more
abundant species, Pterocarpus rohrii, fell from 136 to 83 stems. The mean rate of
population change among 136 species in the large size class was —0.32%, and
the mean rate of absolute change was 1.93%. These are not significantly differ-
ent from rates for stems =10 mm (t-test).

Within-species consistency in population change

Rates of change during 1982-1985 and 1985-1990 were consistent within
species (Figure 2A; the correlation is highly significant: r*=0.266, P<<0.0001
for stems =10 mm dbh; r*=0.246, P<<0.0001 for stems =100 mm). There were
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Figure 2. Scatter plots of population change, with one point plotted for each species. The dotted lines are

diagonal regressions, shown only to indicate the direction of trends. (A) Population change for stems =10 mm
dbh, plotting 1985-1990 rate vs 1982-1985; 219 species included. (B) Population change over 1982-1990,

plotting rate for stems =100 mm dbh vs rate for stems =10 mm dbh; 136 species included.
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Table 3.  Numbers of species with increasing and decreasing populations, by colonizing status, slope status
and growth form. ‘Slope’ means slope-specialists that were not colonizers, ‘colonizer’ means colonizing species
that were not slope-specialists and ‘neither’ means species that were neither slope-specialists nor colonizers
(unlike Figure 1, this latter category does not include species for which information was missing). The four
slope-colonizer species are not included. Asterisks between the increasing and decreasing columns indicate
a significant difference in the fraction of species increasing between a given group and the ‘neither group’
(** indicating P<<0.01 and * P<0.05). The final column gives the mean rate of population change for each
species group.

Number of populations

Mean rate

Growth form Status Increasing Decreasing  No change of change
Large trees Slope 5 6 0 —0.004 £0.030
Neither 15 7 0 0.005 £0.017
Colonizer 8 8 0 0.003 +0.032
Mid-sized trees Slope 5 3 0 0.008 £0.012
Neither 17 11 0 0.001 £0.020
Colonizer 4 4 0 0.018 +£0.049
Understorey trees Slope 1 ok 6 0 —0.025 £0.016
Neither 19 2 0 0.016 £0.016
Colonizer 3 2 0 —0.002 £0.049
Shrubs Slope 0 * 4 0 —0.062 £0.043
Neither 10 5 1 —0.004 £0.024
Colonizer 1 3 0 0.003 £0.011
All species Slope 11 o 19 0 —0.013 £0.033
Neither 61 25 1 0.005 £0.020
Colonizer 16 * 17 0 0.006 £0.050

cases, though, where populations increased dramatically prior to 1985 then
declined afterwards, or vice versa. For example, Piper cordulatum increased from
3149 to 3718 stems, then declined to 1777 (Table 1). Rate of change was also
fairly consistent between the two size classes (r*=0.265, P<<0.0001 for the 1982—
1990 rate), but again there were exceptions (Figure 2B). For example, Trichilia
tuberculata, the most abundant large tree in the plot, suffered a rather consider-
able decline among stems =100 mm dbh, but its population =10 mm dbh

increased (Table 1).

Population change as a_function of species characteristics
Slope status. Slope status was clearly associated with a species’ probability of
declining in abundance. Excluding all colonizing species (in order to separate
the effect of that variable) there were 30 slope-specialists, 19 declining in abund-
ance and 11 increasing. Of 87 non-slope species, 25 declined and 61 increased
(Table 3). Thus, 29% of non-slope but 63% of slope-species declined in abund-
ance (x*=11.1,df=1, P<0.01). Sample sizes were augmented if colonizers were
included, and the pattern remained: 63% of 52 slope species but 42% of 165
non-slope species declined in abundance.

The pattern did not hold for all growth forms, though, in fact the distinction
between slope and non-slope species was due entirely to species of smaller
stature — shrubs and treelets. Of this group, 91% of slope-species and only 19%
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of non-slope species declined in abundance, with the difference statistically
significant in both growth forms (Table 3). But in large and mid-sized trees,
there was no such distinction, with 47% of slope and 36% of non-slope species
declining in abundance and no significant difference in either growth form
(Table 3).

Slope-specialists suffered the most impressive population declines. Of the 18
species declining more than 5% per year, 11 were slope-specialists (Figure 1A,
Table 2). The four most rapid declines were slope-specialist shrubs (Table 2).
Conversely, none of the nine species increasing more than 5% per year were
slope-specialists (Table 2).

The poor performance of slope-specialists was not evident when considering
stems above 100 mm dbh, because there were few treelets and shrubs included
in this size class. For large and mid-sized trees, slope-specialists performed no
worse than non-slope: six of 17 slope species decreased in abundance, whereas
of non-slope species, 20 of 40 declined. Among treelets and shrubs, slope-
specialists did suffer more declines than non-slope species (two out of three vs
four out of 13) but the sample was far too small to evaluate statistically.

Colonizing species. Species designated as gap-colonizers performed somewhat
worse than non-colonizing species, although not as poorly as slope species.
Excluding slope-specialists (to isolate the effect of the colonization variable),
52% of 33 colonizing species and 29% of 87 non-colonizers declined in abund-
ance (x*=5.3, P<0.05, Table 3). Each of the four growth forms showed a
comparable pattern, with colonizers doing slightly worse than non-colonizers,
but none was statistically significant by itself (Table 3).

Despite the fact that colonizers on average performed poorly, they were over-
represented among rapidly increasing populations. Seven of the nine species
increasing faster than 5% per year were colonizers, and only one was not (the
other had an unknown colonization index). In contrast, of the 18 species
decreasing faster than 5% per year, four were colonizers and six were not.

When considering abundance changes in stems =100 mm dbh, there was no
indication that colonizers performed differently than non-colonizers. Excluding
slope-specialists, 10 of 25 colonizing species decreased in abundance, while 24
of 53 non-colonizers declined. The four growth forms did not differ.

Swamp status. Swamp status was unrelated to population change. Considering
stems =10 mm dbh, 26 of 51 swamp species declined in abundance (51%),
whereas 78 of 167 non-swamp species declined (47%). For stems =100 mm
dbh, 10 of 26 swamp species (38%) and 51 of 110 non-swamp (46%) declined.
Neither difference, nor any for individual growth forms, reached statistical signi-
ficance. Like colonizing species, though, swamp-specialists were over-
represented among rapid increasers: seven of nine species increasing =5% per
year were swamp species, but only four of 18 species declining by =5% per
year were.
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DISCUSSION

Nearly all shrubs and treelets that occur preferentially on the slopes of the 50 ha
plot declined in abundance. We know the slopes around the side of the plateau
are a wetter microhabitat during the dry season (Becker ¢/ al. 1988), and we
assume that species more abundant there are less able to tolerate drought stress.
We can support this assumption by casual observations on species distributions:
some of the familiar slope-specialists at BCI — Poulsenia armata, Olmedia aspera,
Erythrina costaricana and Acalypha diversifolia — are common along permanent stre-
ams in forests near BCI (there are no permanent streams on BCI). Further
casual support comes from the genus Piper, which is particularly abundant in
wet forests; five of its eight species in the 50 ha plot species are slope-specialists
(all eight declined in abundance).

It seems certain that this group of shrubs and treelets that cannot tolerate
long drought invaded the plateau forest at BCI during the wetter periods prior
to 1966 but is now being eliminated by the increased severity of the dry season.
It is possible that the extreme dry season of 1983 is solely responsible; alternat-
ively, it may be a continuing problem caused by recurring severe dry seasons.
We cannot distinguish between the two alternatives now, but future censuses
will. If the only problem for drought-intolerant species was 1983, then popula-
tions should level off and perhaps even climb by 1995 or 2000, when the plot
will be censused anew. We are certain, however, that dry season length and
severity is the crucial edaphic variable affecting population success and limiting
species’ ranges at BCI (Wright 1992, Wright & van Schaik 1994). Reduction
of rainfall during the wet season is probably inconsequential (at least for trees)
since water is never limiting then.

Why have moisture-demanding trees of larger stature not suffered population
declines as consistently as shrubs and treelets? We anticipated that they would,
largely because of two prominent canopy trees and strong slope-specialists that
suffered severe declines in abundance: Poulsenia armata and Ocotea whitei. But
other slope-specialists in the canopy, such as Calophyllum longifolium, have
healthy populations. We suggest the following hypothesis to account for this
division and the general decline of shrubs and treelets. As adults, some trees,
like Calophyllum, have longer roots than others, like Poulsenia, long enough to
reach water below the slopes during the dry season, but not from the plateau
(which is higher and thus further from the water table, see Wright & van Schaik
1994); Poulsenia thus suffered high mortality at all sizes during the 1983 El Nifio
drought, whereas Calophyllum did not. But both species have drought-sensitive
seedlings, and are thus largely restricted to the wetter areas within the plot.
Likewise, there are shrubs and treelets with drought-sensitive seedlings that are
restricted to moist regions, but nearly all have short root systems as adults
(Becker & Castillo 1990, Wright 1992) and suffer from long dry seasons at BCI.
(Some shrubs have other drought-adaptations and are widespread in the plot.)
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During moderate dry seasons, there is presumably enough water near the sur-
face of the slopes for these drought-intolerant plants, and this allowed their
spread into the plot prior to 1966, when dry seasons were less severe. The
swamp may remain wet even during the most severe dry seasons, so that
swamp-specialists can persist despite the drying trend.

Are the slope-specialists becoming extinct on BCI, or will they persist in
locally wet sites? It appears not — all shrubs and treelets that declined through-
out the plot declined on both the slopes and the plateau; in fact, most species
had similar rates of change in both regions. Thus, it seems that there is a group
of drought-intolerant species headed for extinction at BCI, at least 16 treelets
and shrubs, and perhaps as many as 30—40 including the large, drought-
sensitive trees like Poulsenia and Ocotea whitei. Howe (1990) has already predicted
that Virola surinamensis, a large, slope-specialist tree, will go extinct on BCI due
to its inability to tolerate long dry seasons. He based his conclusion on seedling
survival data, not having seen the 1982—-1990 population data which bears out
his prediction — a decline from 300 to 239 stems.

Species which preferentially invade light gaps in the 50 ha plot — what we
called colonizing species — had an almost bimodal distribution of population
change. A few species had very rapid increases, but the rest did worse than
average. Condit et al. (1992b) and Hubbell & Foster (1990a) have stated two
different hypotheses about factors affecting the populations of gap-colonizers.
One is that the more open canopy caused by drought-induced mortality in 1983
(Becker & Smith 1990) created more recruitment opportunities for species that
demand light gaps, leading to a population burst in the 10 mm size class by
1985 or 1990. The other hypothesis is that the 50 ha plot is undergoing succes-
sion because the area just north of the plot (plus 2 ha within the plot) was
cleared around the turn of the century but has matured since. Ruderal species
abundant in the near-by farmland maintained high sink populations within the
old forest because of the large number of seeds entering, but these populations
are now declining. Both factors may in fact be at work at the same time. There
are some colonizing species which can obviously maintain high populations
within gaps of old forest (all seven of the rapidly rising species would be
examples), but other species such as Apeiba tibourbou and Schefflera morototoni
which are abundant only in large clearings may not persist in the old forest
and are now in decline (indeed, the latter dropped out of the plot between 1982
and 1985).

An obvious concern with these conclusions is the method for identifying
edaphic preferences of individual species. Some associations with topographic
regions may be due to factors having nothing to do with moisture or light
preference. Artefactual correlations weaken our power to detect effects of mois-
ture preference, but the trends we did detect should be robust with respect to
this error and ought to appear even stronger if species with accidental associ-
ations were segregated. We eventually hope to get physiological information on
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some. species to define independently those that are drought-tolerant (Mulkey
et al. 1994, Wright & van Schaik 1994).

The mean rate of absolute population change in the plot was 2.25% per year,
a 20% increase or 16% decrease after eight years. About 10% of the populations
in the plot are changing >5% per year (a 49% increase or 33% decrease over
eight years). These seem like substantial rates for trees, which ought to have
rather lethargic population trajectories due to their long life spans and slow
growth (Condit ef al. 1992b, Hubbell & Foster 1990a). Are such changes typical
for tropical forests, or is BCI unusual because of the climatic shift taking place?
In a study of 50 ha of dry forest in India, several tree and shrub species under-
went severe declines in abundance — in just three years — due to elephant
herbivory (R. Sukumar, unpublished data). Other studies in the tropics have
been on much smaller areas with irregular censuses, and are very difficult to
compare. For example, Manokaran & Kochummen (1987) documented some
abrupt declines and increases in a 34-year record of tropical forest in Malaysia:
Shorea parvifolia declined from 26 to 16 individuals in 16 years, and Dacryodes
puberula from 14 to four in 34 years, both consistent declines of about 5% per
year, but both are based on small samples. The empirical issue of stability in
tree populations and community composition of tropical forests must be
resolved by more large datasets, and large-scale plots are now under way at 11
sites in Africa, Asia and America (Condit 1995). Results from these will settle
the matter.

These plots will offer a baseline for assessing the impact of global climate
change on tropical forests. Long-term changes in precipitation can have tre-
mendous effects on forests (Foster 1982a,b, Hartshorn 1992), and if Phillips &
Gentry (1994) are correct, COy-fertilization may be changing forest-wide
dynamics. We see perhaps 10% of the species at BCI headed for extinction
because of a 25-year decline in precipitation. Understanding and even anticipat-
ing climatic effects on tropical forests will be crucial for their long-range
conservation.
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APPENDIX

The 48 species names that have been changed since the 50 ha plot was initiated
in 1981 or which do not appear in Croat (1978). The current name is the one
appearing in Table 1. The eight species listed as sp. nov. were newly discovered
in the 50 ha plot and remain undescribed.

Current name

Name in D’Arcy (1987)

Name in Croat (1978)

Appunia seibertii
Ardisia guianensis
Brosimum guinense
Chamaedorea tepejilote
Chamguava schippii
Chrysochlamys eclipes
Chrysophyllum argenteum
Erythroxylum macrophyllum
Garcinia intermedia
Garcinia madruno
Guarea grandifolia
Guarea sp. nov.
Heisteria acuminata
Hyeronima alcheornoides
Inga acuminata
Lonchocarpus latifolia
Lopimia dasypetala
Maclura tinctoria
Malmea sp. nov.
Myrospermum frutescens
Nectandra purpurea
Nectandra sp. nov. 1
Nectandra sp. nov. 3
Ocotea puberula

Ocotea whitei
Oenocarpus mapoura
Ormosia amazonica
Osmosia croatii

Phoebe cinnamomifolia
Pochota quinata
Pochota sessilis
Pourouma bicolor
Pouteria reticulata
Protium sp. nov.

Appunia seibertii
Ardisia guianensis
Brosimum guinense
Chamaedorea tepejilote
Psidium anglohondurensis
Tovomitopsis nicaraguensis
Cynodendron panamense
Erthroxylum macrophyllum
Garcinia intermedia
Garcinia madruno
Guarea grandifolia

not appearing
Heisteria acuminata
Hpyeronima laxiflora
not appearing
Lonchocarpus latifolia
Lopimia dasypetala
Chlorophora tinctoria
not appearing
Mpyrospermum frutescens
Nectandra purpurea
not appearing

not appearing

Ocotea puberula

Ocotea whitei
Oenocarpus mapoura
Ormosia amazonica
Ormosia coccinea
Phoebe cinnamomifolia
Bombacopsis quinata
Bombacopsis sessilis
Pourouma guianensis
Pouteria unilocularis
not appearing

not appearing

not appearing

not appearing
Chamaedorea wenlandiana
Psidium anglohondurensis
Tovomitopsis nicaraguensis
Cynodendron panamense
not appearing

Rheedia edulis

Rheedia acuminata
Guarea multiflora

not appearing
Heisteria longipes
Hpyeronima laxiflora

not appearing
Lonchocarpus pentaphyllus
Pavonia dasypetala

not appearing
Crematosperma sp.

not appearing
Nectandra purpurescens
not appearing

not appearing

Ocotea pyramidata
Ocotea skutchii
Oenocarpus panamanus
not appearing

Ormosia coccinea

Phoebe mexicana
Bombacopsis quinata
Bombacopsis sessilis
Pourouma guianensis
Pouteria unilocularis

not appearing
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APPENDIX 1. (cont.)

RICHARD CONDIT ET AL.

Current name

Name in D’Arcy (1987)

Name in Croat (1978)

Psychotria graciflora
Pterocarpus belizensis
Sapium aucuparium
Sapium sp. nov.
Schefflera morototoni
Senna dariensis
Socratea exorrhiza
Solanum steyemarkii
Terminalia oblonga
Trichilia pallida
Trichilia tuberculata
Trichospermum galeottii
Urera baccifera
Virola sp. nov.

Psychotria graciflora
Pterocarpus belizensis
Sapium caudatum

not appearing
Didymopanax morototoni
Senna dariensis
Socratea exorrhiza
Solanum argenteum
Terminalia oblonga
Trichilia pallida
Trichilia tuberculata
Trichospermum galeottii
Urera baccifera

not appearing

not appearing

not appearing

both (now considered synonyms)
not appearing
Didymopanax morototoni
Cassia fruticosa

Socratea durissima
Solanum argenteum
Terminalia chiriquensis
Trichilia montana
Trichilia cipo
Trichospermum mexicanum
not appering

not appearing




