Environment vs. species input controls of diversity

Modeling diversity and distributions in tree communities

Richard Condit ${ }^{1}$
Smithsonian Tropical Research Institute
${ }^{1}$ SIGEO \& Center for Tropical Forest Science

Center for Tropical Forest Science: Smithsonian \& Harvard

Center for Tropical Forest Science: Smithsonian \& Harvard

Ecological theory

- Why are there so few species in the north?
- Do 1100 species in a small area have their own niches?
- Soil moisture niches?
- Herbivore niches?
- Are 1100 species in a small area demographically identical (the neutral theory)?
(1) CTFS-SIGEO plot network
(2) Preview of Conclusions
(3) Species Input

The neutral theory
Observing species input
Observed and predicted rates of species input
(4) Dispersal
(5) Modeling Communities to Understand Diversity

Model to theory
Voter Model
Modeling Niche Partitioning
Modeling Species Diversity
(6) Conclusions

CTFS forest census plots

Conclusions: my view of forest diversity

- No local stabilizing forces sufficient to maintain observed diversity
- Diversity at 50 ha maintained by species input

Conclusions: my view of forest diversity

- Dispersal effective over 10 s to 100 km
- Most species locally are demographically neutral, or even sinks

Conclusions: my view of forest diversity

- At the wider scale, hundreds of run-of-the-mill environmental niches are easy to understand

Importance of the neutral theory

- is not neutrality

Importance of the neutral theory

- is not neutrality
- it's the focus on speciation and species input as cause of diversity
- and on stochastic populations of individuals

Observing species input

Rauvolfia littoralis

 in 1990

Observing species input

Rauvolfia littoralis

 in 1995The species had never been seen anywhere on BCI before

Quantifying species input

Rate of input v needed to maintain observed diversity is predicted exactly under stochastic dynamics
input predicted:

- BCI
input observed
- BCI 1990-95:

Quantifying species input

Rate of input v needed to maintain observed diversity is predicted exactly under stochastic dynamics
input predicted:

- BCI
- $v=\frac{S_{1}}{J}=\frac{23}{2.3 \times 10^{5}}$
- $=1.0 \times 10^{-4}$
input observed
- BCI 1990-95:

Quantifying species input

Rate of input v needed to maintain observed diversity is predicted exactly under stochastic dynamics
input predicted:

- BCI
- $v=\frac{S_{1}}{J}=\frac{23}{2.3 \times 10^{5}}$
- $=1.0 \times 10^{-4}$
input observed
- BCI 1990-95:
- 4 new species among 21727 recruits
- (Cecropia longipes, Psychotria psychotriifolia, Rauvolfia littoralis, Vismia macrophylla)

Quantifying species input

Rate of input v needed to maintain observed diversity is predicted exactly under stochastic dynamics
input predicted:

- BCI
- $v=\frac{S_{1}}{J}=\frac{23}{2.3 \times 10^{5}}$
- $=1.0 \times 10^{-4}$
input observed
- BCI 1990-95:
- 4 new species among 21727 recruits
- (Cecropia longipes, Psychotria psychotriifolia, Rauvolfia littoralis, Vismia macrophylla)
- $=1.8 \times 10^{-4}$

Quantifying species input

Rate of input v needed to maintain observed diversity is predicted exactly under stochastic dynamics

- Luquillo diversity:
- $=1.9 \times 10^{-4}$
- Luquillo 1996-2001:
- 5 new species among 25090 recruits
- (Mimosa pudilla, Phytolacca rivinoides, Piper pellatata, Neuroleana lobata, Rauvolfia nitida)
- $=2.0 \times 10^{-4}$

Local extinction can be quantified

- it must to balance species input
- observed rates are higher than expected from random death (10 different CTFS plots)
predicted extinction from random death

Local extinction can be quantified

- they should be lower under stabilizing dynamics

Species turnover is routine

Take-home message:

Species turnover is observed and maintains diversity
Local stabilizing forces do not maintain diversity

Dispersal

- Several lines of evidence demonstrate
- Tree species are well-dispersed over 50 ha
- Seeds and saplings often $100-1000 \mathrm{~m}$ from parents
- Important question in dispersal
- How frequent are $1-10 \mathrm{~km}$ and $10-100 \mathrm{~km}$ dispersal events?

Cavanillesia platanifolia

Modeling communities of trees

Start with observable traits of individuals:

- Mortality
- Reproduction
- Growth
- Dispersal
- Speciation

Predicting community patterns:

- Diversity
- Abundance
- Spatial patterns
- Species-area relationship
- Extinction

Modeling communities of trees

Start with observable traits of individuals:

- Mortality
- Reproduction
- Growth
- Dispersal
- Speciation

Predicting community patterns:

- Diversity
- Abundance
- Spatial patterns
- Species-area relationship
- Extinction

Community properties of broad interest emerge from the model without any direct assumptions

Coexistence vs. diversity models

- coexistence theories are not diversity theories

Lecointea amazonica

Coexistence vs. diversity models

- coexistence theories are not diversity theories
- predicting diversity requires theories of
- species input
- extinction
- population size
- plus coexistence mechanisms

Lecointea amazonica

Voter model

An individual model of birth and death (or vote-switching)

Hubbell model = voter model

- grid of 1800×1800 trees
- core of 500×250 trees avoids edges

Voter model

Incorporating niche differences

Features added to neutral model:

- variation in dispersal distance
- niche differences: mortality varies with topography
- delayed maturation

Niche-partitioning in real life

Korup 50-ha plot, Cameroon

Manilkara lososiana (Sapotaceae)

D. Thomas, D. Kenfack, G. Chuyong, R. Condit

492 species \& 329,000 individuals

Niche-partitioning in real life

Cola semecarpophylla (Malvaceae)

$\begin{array}{lllllllllll}0 & 100 & 200 & 300 & 400 & 500 & 600 & 700 & 800 & 900 & 1000\end{array}$

Niche-partitioning in real life

Protomegabaria stipitata (Euphorbiaceae)

Niche-partitioning in real life

Protomegabaria stipitata (Euphorbiaceae)

Simulated niche-partitioning

Species 108 has high survival in low non-depression

500×250 core of 1800×1800 grid low species input 1.5×10^{-7} (a new species every ~ 100 years) 9 species at equilibrium with stable abundances over 10^{6} years

Simulated niche-partitioning

Species 108, Species 64

500×250 core of 1800×1800 grid low species input 1.5×10^{-7} (a new species every ~ 100 years)
9 species at equilibrium with stable abundances over 10^{6} years

Simulated niche-partitioning

Species 108, Species 64, Species 32

500×250 core of 1800×1800 grid low species input 1.5×10^{-7} (a new species every ~ 100 years)
9 species at equilibrium with stable abundances over 10^{6} years

Simulated niche-partitioning

Species 108, Species 64, Species 32, Species 39

500×250 core of 1800×1800 grid
low species input 1.5×10^{-7} (a new species every ~ 100 years)
9 species at equilibrium with stable abundances over 10^{6} years

Simulated niche-partitioning

Niche sharing

Species 19 and 8 share a niche and disperse well

500×250 core of 1800×1800 grid high species input: 1.5×10^{-5} (a new species every year)
85 species with drifting abundances

Simulated niche-partitioning

Niche sharing
Species 313 and 79 share a niche and disperse poorly

500×250 core of 1800×1800 grid high species input: 1.5×10^{-5} (a new species every year)
85 species with drifting abundances

Simulated niche-partitioning

Spillover into neighboring niches

good diserpsal
high species input
weak niche differences delayed maturation

Niche-driven species diversity

Niche breadth and diversity

- low species input insufficient to maintain diversity
- identical niche strength

Niche-driven species diversity

Dispersal and diversity

- poor dispersal enhances diversity in niche-driven system
- it reduces diversity in input-driven system

Traits vs. abundance

Many simulated species have niche center outside the plot

- trait is elevation preference
- right section means preference is outside the plot

Conclusions

Species input vs. niche segregation

Diversity maintained by species input

Conclusions

Species input vs. niche segregation

Diversity maintained by species input

- Diversity can be very high
- Many rare species
- Species traits weakly related to abundance
- Species differences are unimportant to diversity

Conclusions

Species input vs. niche segregation

Diversity maintained by niche partitioning

Species input vs. niche segregation

Diversity maintained by niche partitioning

- At local scale, diversity is at best moderate
- Few rare species
- Species traits strongly related to abundance
- Coexistence theories matter and should predict diversity

Diversity maintained by species input

- Diversity can be very high
- Many rare species
- Species traits weakly related to abundance
- Species differences are unimportant to diversity

Diversity maintained by niche partitioning

- At local scale, diversity is at best moderate
- Few rare species
- Species traits strongly related to abundance
- Coexistence theories matter and should predict diversity

Conclusions

Species input vs. niche segregation

Diversity maintained by species input
Real forests

- Diversity can be very high
- Many rare species
- Species traits weakly related to abundance

Diversity maintained by niche partitioning

Conclusions

Stochastic neutral and non-neutral communities

Fun facts to remember:

- Births and deaths have random component
- Local species input and extinction matter
- Trees disperse well at 50-ha scale
- Dispersal and soft niches can lead to sink populations
- Communities may behave neutral even if species differ

Conclusions

Stochastic neutral and non-neutral communities

