Environment vs. species input controls of diversity

Modeling diversity and distributions in tree communities
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Ecological theory

e Why are there so few species in the north?
e Do 1100 species in a small area have their own niches?

e Soil moisture niches?
e Herbivore niches?

e Are 1100 species in a small area demographically identical (the
neutral theory)?
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CTES forest census plots

1980-2010

e (Hubbell, Foster,
Condit, Pérez,
Lao)



Conclusions: my view of forest diversity

e No local stabilizing forces sufficient to maintain observed
diversity

e Diversity at 50 ha maintained by species input



Conclusions: my view of forest diversity

e Dispersal effective over 10s to 100 km

e Most species locally are demographically neutral, or even sinks



Conclusions: my view of forest diversity

e At the wider scale, hundreds of run-of-the-mill environmental
niches are easy to understand



Importance of the neutral theory

e is not neutrality



Importance of the neutral theory

e is not neutrality

e it’s the focus on speciation and species input as cause of diversity

¢ and on stochastic populations of individuals



Observing species input

Rauvolfia littoralis
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Observing species input

Rauvolfia littoralis
in 1995 > O \\‘/‘
The species had 0
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Quantifying species input

Rate of input v needed to maintain observed diversity is predicted
exactly under stochastic dynamics

input predicted: input observed
e BCI e BCI 1990-95:
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Quantifying species input

Rate of input v needed to maintain observed diversity is predicted
exactly under stochastic dynamics

input predicted: input observed
e BCI e BCI 1990-95:
o V= % = ﬁ e 4 new species among 21727 recruits
e =1.0x107% ® (Cecropia longipes, Psychotria psychotriifolia,

Rauvolfia littoralis, Vismia macrophylla)



Quantifying species input

Rate of input v needed to maintain observed diversity is predicted
exactly under stochastic dynamics

input predicted: input observed
e BCI e BCI 1990-95:
o V= % = ﬁ e 4 new species among 21727 recruits
e —1.0x10" ® (Cecropia longipes, Psychotria psychotriifolia,

Rauvolfia littoralis, Vismia macrophylla)

e =18x107*



Quantifying species input

Rate of input v needed to maintain observed diversity is predicted
exactly under stochastic dynamics

input predicted: input observed
e Luquillo diversity: e Luquillo 1996-2001:
e —19x10°* e 5 new species among 25090 recruits

® (Mimosa pudilla, Phytolacca rivinoides, Piper pellatata,

Neuroleana lobata, Rauvolfia nitida)

e =20x10*



Local extinction can be quantified

e it must to balance
species input
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predicted extinction from random death



Local extinction can be quantified
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Species turnover is routine

Take-home message:

Species turnover is observed and maintains diversity
Local stabilizing forces do not maintain diversity



Dispersal

Some Conclusions

e Several lines of evidence demonstrate

o Tree species are well-dispersed over 50 ha
e Seeds and saplings often 100-1000 m from parents

e Important question in dispersal
e How frequent are 1-10 km and 10-100 km dispersal events?

Cavanillesia platanifolia



Modeling communities of trees

Start with observable
traits of individuals:

Mortality

Predicting community patterns:

e Diversity

e Reproduction e Abundance

Growth

e Spatial patterns

e Species-area relationship

Dispersal
e Extinction

Speciation



Modeling communities of trees

Start with observable
traits of individuals:

Mortality

Predicting community patterns:

e Diversity

e Reproduction e Abundance

Spatial patterns

e Growth

o Dispersal e Species-area relationship
_ e Extinction

e Speciation

Community properties of broad interest emerge from the model
without any direct assumptions



Coexistence vs. diversity models

e coexistence theories are not diversity theories

Lecointea amazonica



Coexistence vs. div

e coexistence theories are not diversity theories
o predicting diversity requires theories of

e species input

e extinction

e population size

e plus coexistence mechanisms

Lecointea amazonica
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Voter model

An individual model of birth and death (or vote-switching)

Fig. 61
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Hubbell model = voter model

e grid of 1800x1800 trees

e core of 500x250 trees avoids
edges



Voter model

Incorporating niche differences

2 v < d‘\, Features added to neutral model:

e variation in dispersal distance

e

e niche differences: mortality
varies with topography

e delayed maturation




Niche-partitioning in real life

Korup 50-ha plot, Cameroon

Manilkara lososiana (Sapotaceae)
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D. Thomas, D. Kenfack, G. Chuyong, R. Condit
492 species & 329.000 individuals



Niche-partitioning in real life

Korup 50-ha plot, Cameroon

Cola semecarpophylla (Malvaceae)
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Niche-partitioning in real life

Korup 50-ha plot, Cameroon

Protomegabaria stipitata (Euphorbiaceae)
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Niche-partitioning in real life

Korup 50-ha plot, Cameroon

Protomegabaria stipitata (Euphorbiaceae)
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Simulated niche-partitioning

Species 108 has high survival in low non-depression
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low species input 1.5x10~7 (a new species every ~100 years)
9 species at equilibrium with stable abundances over 10° years



Simulated niche-partitioning
Species 108, Species 64
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9 species at equilibrium with stable abundances over 10° years



Simulated niche-partitioning
Species 108, Species 64,
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Simulated niche-partitioning
Species 39

Species 108, Species 64,
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500x250 core of 1800x1800 grid
low species input 1.5x10~7 (a new species every ~100 years)
9 species at equilibrium with stable abundances over 10° years



Simulated niche-partitioning

Niche sharing

Species 19 and 8 share a niche and disperse well
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85 species with drifting abundances



Simulated niche-partitioning

Niche sharing

Species 313 and 79 share a niche and disperse poorly
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Simulated niche-partitioning

Spillover into neighboring niches
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Niche-driven species diversity

Niche breadth and diversity
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e low species input insufficient to maintain diversity

e identical niche strength



Niche-driven species diversity

Dispersal and diversity

short

species
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generations

e poor dispersal enhances diversity in niche-driven system

e it reduces diversity in input-driven system



abundance
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Traits vs. abundance

Many simulated species have niche center outside the plot

B R niche center outside the plot
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habitat center

trait is elevation preference

right section means preference is outside the plot
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Conclusions

Species input vs. niche segregation

Diversity maintained by species input



Conclusions

Species input vs. niche segregation

Diversity maintained by species input
e Diversity can be very high
e Many rare species
e Species traits weakly related to abundance

e Species differences are unimportant to diversity
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Conclusions

Species input vs. niche segregation

Diversity maintained by niche partitioning

At local scale, diversity is at best moderate

e Few rare species

Species traits strongly related to abundance

Coexistence theories matter and should predict diversity
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Species input vs. niche segregation

Diversity maintained by species input
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Diversity maintained by niche partitioning

At local scale, diversity is at best moderate

e Few rare species

Species traits strongly related to abundance

Coexistence theories matter and should predict diversity



Conclusions

Species input vs. niche segregation

Diversity maintained by species input
Real forests

e Diversity can be very high
e Many rare species

e Species traits weakly related to abundance

Diversity maintained by niche partitioning



Conclusions

Stochastic neutral and non-neutral communities

Fun facts to remember:
e Births and deaths have random component
e Local species input and extinction matter
e Trees disperse well at 50-ha scale
e Dispersal and soft niches can lead to sink populations

e Communities may behave neutral even if species differ
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