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14.1 Introduction
Increasing atmospheric carbon dioxide, changing climates, nitrogen

deposition and other aspects of anthropogenic global change are hypoth-

esised to be changing forest productivity and biomass stocks in tropical

forests and elsewhere (Clark 2004; Lewis, Malhi & Phillips 2004; Lewis et al.

2009a; Luo, 2007; Myeni et al. 1997). These hypotheses continue to be

much debated, with contrary views on the plausibility of particular mech-

anisms and on the status of current evidence for or against them (Clark

2007; Friedlingstein et al. 2006; Holtum & Winter 2010; Körner 2009;

Wright 2005, 2010). The influence of atmospheric and climate change on

forest biomass is of particular interest because of the potential for positive

or negative feedbacks. Increases in forest biomass and associated carbon

pools would slow the rise in atmospheric carbon dioxide, producing a

negative feedback, whereas decreases in forest biomass would have the

opposite effect. Uncertainty surrounding these feedbacks is considerable

at the global scale, with important implications for global carbon budgets

(Luo 2007).

In view of this, it is essential to know whether forests are experiencing

changes in productivity and biomass in excess of those typical for their age.

Successional forests, those regrowing after disturbances, increase in biomass

over time, with the trajectory and duration of this increase varyingwith forest

type (Bormann & Likens 1979; Odum 1969). In the absence of global change,

such forests are expected to eventually reach a dynamic equilibrium in which

biomass gains from growth and recruitment are balanced by biomass losses

from tree death and branchfall, and these old-growth forests thus experience

no directional changes in biomass (Odum 1969; Yang, Luo & Finzi 2011).

Accordingly, detection of directional changes in biomass in old-growth forests

is generally considered evidence of global change influences. When and

where such changes are detected, the next critical question concerns
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prediction of future net carbon fluxes and ultimate carbon stocks of such

altered forests.

Detecting influences of global change on forest biomass is complicated by

the fact that biomass is always changing on small spatial scales even in old-

growth forests. In old-growth forests, gap-phase dynamics mean that forests

in most areas and at most times are increasing modestly in biomass as trees

grow, while a few are experiencing large decreases in biomass where one or

more large trees have died (‘slow in, rapid out’, in the words of Körner 2003).

It is only on a landscape scale that we expect the biomass of old-growth

forests to be at equilibrium in the absence of global change or other tempo-

ral climate variability (note that this applies only to biomass; soil carbon

stocks, for example, may show long-term directional change even in old-

growth forests). Regional and global climate cycles could lead forests to

be out of equilibrium even on landscape scales at any given time. Thus,

detecting global change in old-growth forests requires a large enough sam-

ple size with adequate distribution in space and time to be able to confi-

dently distinguish global change influences from the natural gap-dynamic

cycle and cyclical climate variation. The question of what constitutes an

adequate sample size has been addressed in the recent literature (Fisher et al.

2008; Gloor et al. 2009).

Because of the large area of old-growth forests in the tropics, and their

high carbon density, potential alteration of their biomass stocks is of partic-

ular importance to the global carbon cycle (Saugier, Roy & Mooney 2001;

Schimel 1995). Many studies have evaluated changes in biomass stocks in

tropical forests using recensuses of field plots (Baker et al. 2004; Chave et al.

2008; Lewis et al. 2009b; Phillips et al. 1998, 2008), and some have also

examined changes in coarse woody productivity (Lewis et al. 2004; Phillips,

1996). Field measurements of tropical forest biomass stocks have focused

largely on aboveground woody biomass of trees. Generally biomass is esti-

mated frommeasurements of trees greater than 10 cm in diameter at breast

height (dbh) and from allometric relationships. These trees constitute the

vast majority of biomass stocks in these forests, with smaller trees and

shrubs, lianas and herbaceous vegetation making up a small minority that

few studies have measured directly. Belowground biomass pools (roots, etc.)

can also be estimated from allometric relationships, typically by assuming

that they are proportional to aboveground biomass. Empirical evidence

suggests that this is true on average, although there is considerable variation

among sites in the observed proportions (Wolf, Field & Berry 2011; Yang &

Luo 2011). More precise methods of estimating above- and belowground

biomass rely on destructive techniques that disturb the forest and prohibit

repeat measurements and assessments of change. Soil carbon pools are also

hypothesised to be affected by global change (Luo 2007; Rustad et al. 2001),
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but to date there have been few studies of repeated measurement of soil

carbon in the tropics.

In this contribution, we address the issues of how to detect and project

biomass change in old-growth forests from plot data, focusing on tropical

forests. We focus solely on aboveground biomass (hereafter referred to

simply as ‘biomass’), the pool for which the most data are available. We first

evaluate some key contributions to uncertainty and bias in estimates of

biomass change from plot data. We specifically examine the scaling of sam-

pling error with plot area and census interval, and the potential for biases

resulting from different kinds of measurement errors and data entry errors

and their interaction with error-correction routines. We then discuss alter-

native approaches to projecting future biomass of old-growth forests, and

present a new approach based on Markov chain models of small plot biomass

transitions. Throughout, we use the 50-ha forest dynamics plot on Barro

Colorado Island (BCI) as a case study. We close with recommendations for

future work.

14.2 Estimating biomass change
14.2.1 Sampling errors in biomass change
A major contributor to uncertainty in biomass change estimates from plot

data in old-growth forests is sampling error. On small scales, some areas are

expected to have strong decreases in biomass due to deaths of big trees,

whereas most areas are expected to witness no such mortality and thus will

have smaller increases in biomass that reflect tree growth. Samples based on

larger plot areas and longer census intervals are expected to encompass more

representative distributions of these changes. Quantification of sampling

uncertainty is important for developing confidence intervals on estimates

of biomass change, and associated tests of whether observed changes are

significantly different from zero.

It is important to note that sampling errors are inherently unbiased. A

measurement is by definition biased if its expected value, i.e. the mean of

the distribution of its values, is different from the true value. For any random

sample, the expectation of the sample mean is the true mean. Statements by

Fisher et al. (2008) and Körner (2009) that the sample mean of biomass change

is biased because of the ‘slow in, rapid out’ phenomenon are incorrect and

reflect a misunderstanding of the meaning of bias. The ‘slow in, rapid out’

phenomenon can indeed lead to an asymmetric (skewed) sampling distribu-

tion, in which themedian exceeds themean, but themean of this distribution

is still the true mean provided the plots are an unbiased sample of the land-

scape. One real concern is that the ‘slow in, rapid out’ phenomenon could

exacerbate biases associated with non-random plot placement across the

landscape. For example, biomass change estimates will be biased in the
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positive direction if site selection is biased towards locations that experience

less disturbance during the census interval (Körner 2009).

Fisher et al. (2008) and Gloor et al. (2009) recently explored the influence of

sampling error on true power to reject the null hypothesis of no change in

biomass given the potential for large-scale disturbances. These studies use

simulation analyses to explore the importance of clustered disturbances

combined with the ‘slow in, rapid out’ nature of biomass change, and the

sample size needed to confidently reject a null hypothesis of no change. The

studies come to contrasting conclusions on the sufficiency of available evi-

dence to reject the hypothesis of no change, reflecting two key differences in

assumptions. Fisher et al. (2008) underestimate the available sample size in

time – assuming one-year census intervals, when in fact intervals were more

typically 10 years. Fisher et al. (2008) also use a flawed procedure to fit the

size distribution of disturbance events, and thus almost certainly overesti-

mate the probability of large disturbance events. Gloor et al. (2009) corrected

these errors, and concluded that sample sizes in area and time were sufficient

to demonstrate that average biomass change in 135 forest plots, typically 1 ha

or larger, across the Amazon basin is significantly positive, under the assump-

tions that plots were an unbiased sample of the landscape and that individual

plot biomass change estimates were unbiased. It is important to note that

these results are sensitive to the frequency of large disturbance events, and

that there are very limited existing data relevant to estimating these

frequencies.

Quantification of sampling errors is of considerable interest, in part for

tests of whether observed changes are significantly different from zero.

Here, we first examine how sampling uncertainty scales with plot area and

time period for individual plots, an issue that is critical to determining the

appropriateweightingwhenplot size and census interval vary.We thenaddress

the issue of sampling uncertainty for mean biomass change in ensembles

of plots.

14.2.1.1 Spatial and temporal scaling of sampling uncertainty for single plots
Spatial and temporal autocorrelation in biomass change, or its absence, is

critical to the scaling of sampling errors in biomass change. In the absence of

such autocorrelation, the variance of the observed change in biomass per area

is expected to decrease in proportion to 1/(area × time), because area × time is

the effective total sample size. (Therefore, the standard deviation and

the coefficient of variation, CV, are expected to decline in proportion to

1/sqrt(area × time).) When spatial and/or temporal autocorrelation is present,

however, uncertainty will decrease more slowly with increasing area (for

contiguous or nearby plots) and time interval. Previous studies of the spatial

scaling of uncertainty in biomass (not biomass change) have found that the
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coefficient of variation declines with area to the power –0.43 between 0.05

and 6 ha for biomass of trees >10 cm in Paracou, French Guiana (Wagner et al.

2010), and to the power –0.37 between 0.125 and 4 ha for biomass of

trees >35 cm in Tapajos, Brazil (reanalysis of the data plotted as Figure 14.4

in Keller et al. (2001)). Earlier studies have examined similar questions

for basal area (e.g. Higuchi, dos Santos & Jardim 1982). The difference from

scaling with a power of –0.5 suggests some spatial autocorrelation in

biomass at these scales and sites. Wagner et al. (2010) further found that

the CV of biomass productivity and biomass losses scaled with area to the

power –0.429 and –0.451, respectively, suggesting that net biomass change

would be likely to scale with similar exponents, again reflecting some spatial

autocorrelation.

We used the 25-year, 50-ha dataset for the BCI forest dynamics plot to

examine the spatial and temporal scaling of uncertainty in biomass change

at this site.We found that the decrease in the standard deviation with increas-

ing plot size from 0.025 to 1 ha matched the theoretical expectation if there

is no spatial autocorrelation, with the standard error of biomass change

declining almost exactly with 1/sqrt(area), i.e. with area to the power −0.5
(Figure 14.1A). Linear regression of the log-transformed standard deviation on

log-transformed area produces an estimated slope of −0.493 (95% CI −0.496 to

−0.491). This is consistent with the lack of spatial structure in biomass change

at these scales: the semivariogram is flat (results not shown), as is the wavelet

power spectrum (Figure 14.2A). Temporal autocorrelation also appeared to be

unimportant on the time scales considered, as the standard deviation

declined with the inverse square root of census interval in accordance with

the theoretical prediction for the case of no autocorrelation (Figure 14.1B).

Bootstrapping over subplots can be used to quantify sampling uncertainty

for single plots. Since the biomass change on the plot is knownmore exactly,

this bootstrapping procedure is technically estimating sampling uncertainty

associated with the stochastic process operating within this plot (and that

could potentially have produced other outcomes) (e.g. Chave et al. 2008).

When dividing a plot into subplots for the purposes of within-plot bootstrap-

ping, it is essential that the subplot scale be greater than the integral length

scale, the scale at which the spatial semivariogram plateaus, i.e. there should

be no spatial autocorrelation between subplots. Violation of this could lead

to artificially low confidence intervals. On BCI, as Chave et al. (2008) previously

reported for this and other large plots, the confidence intervals are insensitive

to the subplot scale for subplot sizes between 0.025 and 1 ha (Figure 14.2B),

consistent with the lack of spatial structure at these scales (Figure 14.2A).

The sampling uncertainty for the full 50-ha plot that is estimated by

bootstrapping over subplots is exactly consistent with the spatial scaling of

sampling uncertainty for smaller areas (Figure 14.1A).
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One perhaps obvious limitation of plot-based assessments of the spatial

scaling of sampling error in biomass change is that they provide no informa-

tion on how error scales over larger areas than the largest sample taken. This

is because differences in habitat, land-use history, climate or other factors

may exist beyond the sampled area, which could cause the variogram to rise at
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Figure 14.1 Sampling uncertainty in estimated biomass change as a function of plot

area and census interval for the 50-ha plot on Barro Colorado Island, Panama,

quantified here as the standard deviation of the biomass change over replicate plots

and/or census intervals of the relevant size. (A) Observed standard deviations for square

plots of different area (squares) and the standard deviation of the estimate for the

whole plot obtained from bootstrapping over subplots (triangle) for the 2005–2010

census interval, compared with the expected decline with square root of area (line).

(B) Standard deviations for the entire 50-ha plot from bootstrapping over 10 × 10 m

subplots for census intervals of different length using the six censuses between 1985 and

2010 (plus signs), and the average of the standard deviations for any census interval

(circles), compared with the expected decline with the square root of time (line).
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a different rate than within the sampled area. For example, although we

found no spatial autocorrelation of biomass change within the BCI 50-ha

plot, we expect that there might be spatial autocorrelation at larger scales

within central Panama due to spatially structured variation in rainfall, soil

type and past land-use. We also expect that other sites of similar scale might

show very different patterns of spatial and temporal scaling of sampling

errors. In particular, sites that have experienced recent large-scale patchy

disturbances (unlike BCI) might show significant spatial and temporal auto-

correlation in biomass and biomass change, and thus slower declines in

sampling error with area and time. Parallel issues regarding how patterns

change with spatial scale have long been a focus of research on diversity;

e.g. the distinction between alpha, beta and gamma diversity (MacArthur &

Wilson 1967; Ricklefs 2004).

14.2.1.2 Sampling uncertainty for ensembles of plots
If samples are available from different plots within a landscape or region, it

becomes possible to estimate landscape biomass or biomass changewithin an
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Figure 14.2 The spatial structure of biomass change on the BCI 50-ha plot. (A) The

wavelet power spectrum, with 95% confidence intervals (dashed line), shows little

significant spatial structure or autocorrelation. (B) The bootstrapped standard

deviation (1000 bootstraps) of biomass change estimates on BCI is insensitive to the

spatial grain over which bootstrapping is done, as expected given the lack of spatial

structure at these scales.
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appropriate statistical framework. Biomass change estimates may come from

plots of different areas and census intervals of different lengths. If the plots

are randomly situated in the landscape, then the best unbiased estimate of the

overall landscape biomass change is obtained by taking a weighted mean of

the individual site estimates, where each weight is proportional to the recip-

rocal of the variance of the corresponding site estimate. Let X(a,t) be a random

variable representing the biomass estimate at a randomly chosen site of area a

and census interval t. Then the variance of X(a,t) is

var X a; tð Þð Þ ¼ 1

t
σ2 þ τ2

a

� �

where σ2 is the between-site (landscape) variance and τ2 is the within-site

variance (e.g. between individual hectares within the site). In practice, the

variances may be difficult to estimate. The formula above assumes that tem-

poral autocorrelation in biomass change can be ignored. If temporal autocor-

relation is substantial, then plots should be weighted more evenly with

respect to census interval, with the exact weighting depending on the form

of temporal autocorrelation.

The proper weighting of plots varying in area thus depends critically on the

relative size of the variance within sites (τ2) and the variance among sites (σ2).

In the limit that landscape variance is much larger than within-site variance

(very heterogeneous landscapes), the weighting formula reduces to simply t,

meaning equal weighting if the census intervals are equal across sites, regard-

less of plot area. In the limit that landscape variance is much smaller than

within-site variance and within-site variance is identical across plots (very

homogeneous landscapes), the weighting formula reduces to ta. Intermediate

situations call for weighting by the product of time and of area to a power

between zero and one, e.g. t
ffiffiffi
a

p
.

The choice of weightings can make a small but noticeable difference in the

mean change across plots (Table 14.1), emphasising the importance of choos-

ing an appropriate weighting scheme or at least testing the robustness of

results to different plausible weighting schemes (as done by Baker et al. 2004).

Of course, if information on underlying landscape heterogeneity is available

and if the available plots are not proportionally representative of this hetero-

geneity, weighting should also take account of this, if possible. De Gruijter

et al. (2006) provides an excellent treatment of the broader issues surrounding

sampling design in environmental monitoring.

One approach to determining the best weighting for biomass change esti-

mates is to search empirically for the weighting that minimises trends in

residuals plots of site biomass change versus site area and census interval

(Phillips et al. 2009; Lewis et al. 2009b). Specifically, one graphs the product of
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weights and squared residuals vs area and vs time. This approach is in princi-

ple excellent; however, to produce useful results it requires sufficiently large

numbers of sites of different areas and census intervals, a condition that is

rarely met in practice. (For example, the vast majority of plots used in the

abovementioned papers are 1 ha in area, and there are too few plots at other

areas to gain much insight into the best weighting by area.) Combining the

datasets from all the references in Table 14.1 provides a somewhat better basis

for choosing a weighting with area, and suggests that the ideal weighting

would be the product of time and of area to a power between 0 and 1.

Weighting by t or ta leads to significant trends in the residuals plots, while

weighting by t
ffiffiffi
a

p
(among others) produces no significant trends.

Once the appropriate weighting has been determined, confidence intervals

for sampling uncertainty for an ensemble of sites can be estimated by boot-

strapping over plots or sites (e.g. Phillips et al. 2009). If multiple plot data are

available, it is possible to bootstrap at both the within-plot and between-plot

levels to produce a confidence interval on the landscape biomass change

estimate, providing that appropriate weighting schemes are used on the

between-plot bootstrapped data. It is important to note that this only captures

uncertainty due to sampling error.

14.2.2 Influences of measurement errors and data
‘cleaning’ procedures
Measurement errors are ubiquitous and inescapable in field data collection.

Variation in the height of the measuring tape or caliper on the stem and

variation in the hydration status of the stem introduce random errors into

stem diameter measurements. Further, error in positioning the measuring

tape to be exactly perpendicular to the long axis of the stem can lead to

systematic overestimation of diameter. Additional and potentially larger

errors enter during data recording and data entry, including digit switching,

missed or added digits, and switching data between two trees. Careful field

and data entry procedures can reduce the incidence of such errors, but never

completely eliminate them. All these errors, hereafter referred to simply as

measurement errors, introduce uncertainty into estimates of standing bio-

mass and biomass change. Further, because of the non-linear relationship

between diameter and biomass, random errors in diameter can and do induce

systematic errors in biomass. In tropical forests, trees with buttresses or other

types of irregular trunks present additional challenges for accurate and

precise measurements of biomass and biomass growth (Clark 2002; Phillips

et al. 2002; Sheil 1995).

Most studies have attempted to minimise the influence of measurement

errors and changing height ofmeasurement on buttressed trees throughwhat

we will call data cleaning procedures. These typically include screening data
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for outliers that are considered so unlikely as to almost certainly be errors,

and substituting a corrected value for these outliers; we will refer to these

steps as data screening and gap-filling, respectively. In addition, most studies

in which points of diameter measurement change on some trees between

censuses have devised algorithms to ‘correct’ the diameter change on these

trees. The data cleaning steps that are taken typically seem reasonable, but

multiple alternative procedures meet the ‘reasonable’ test. Where authors

have, to their credit, examined multiple alternatives, they often find that

these produce different results (Chave et al. 2003; Lewis et al. 2009a). Such

sensitivity analyses are laudable, but do not shed light on which alternative is

best. Choice among data cleaning procedures should ideally be based on

analyses of the potential for the data cleaning itself to introduce errors and

biases. For studies of forest change, systematic errors are arguably of more

concern than random errors.

To demonstrate the potential influences of different data cleaning pro-

cedures on estimates of biomass change, we estimated biomass change over

two census intervals on BCI using a variety of procedures to deal with extreme

outliers, hemiepiphytes (strangler figs) and trees whose point of measure-

ment changed. The estimated aboveground biomass (AGB) change between

1985 and 1990 is greatly affected by the choice of data cleaning procedures: it

varies from −0.61 (95% confidence interval, CI, −1.22, −0.05) MgC ha−1 yr−1 if

the raw ‘uncorrected’ data are analysed, to +1.31 (0.83, 1.70) if using a gap-

filling procedure for AGB-change outliers and stems that have point-of-

measurement changes (Table 14.2). The high sensitivity to data cleaning

procedures for this census interval in part reflects the large number of prob-

lematic cases in this census interval, owing to changes in details of census

procedures (especially with respect to buttressed trees) and changes in field

personnel between these two censuses. The estimated AGB change between

2005 and 2010, when detailed census procedures and supervisory personnel

were consistent across both censuses, is considerably less sensitive to the data

correction method used, but still varies from −0.47 (−0.98, −0.08) to −0.07
(−0.54, 0.27) MgC ha−1 yr−1 (Table 14.2). In the earlier census interval, the

choice of data cleaning procedure makes the difference between significant

biomass decline and significant biomass increase. In the later interval, it

makes a difference between statistically significant biomass decline and no

significant biomass change.

Clearly, then, procedures for data screening, gap-filling and modelling

growth in trees with changing points ofmeasurement are critically important

to estimating biomass change in tropical forests. Many previous authors have

discussed the potential qualitative impact of different types of measurement

errors or measurement procedures (Clark 2002; Phillips et al. 2002; Sheil

1995). Here, we focus on just two issues – issues that our analyses show are
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particularly important to determination of biomass change in this forest

(Table 14.2). First, we examine the impact of ordinary measurement

errors and data cleaning procedures and their interaction on estimates of

biomass and biomass change. Second,we discuss issues surroundingmeasure-

ment and modelling of growth in buttressed trees, or more generally, all

trees whose diameter is measured above the standard 1.3m andwhose height

of measurement may change substantially over time. In both cases, we focus

Table 14.2 Effects of alternative data cleaning routines on AGB change estimates (95%
CI) for the BCI 50-ha plot for 1985–1990 and 2005–2010. Census methodology and
supervisory personnel changed somewhat between the 1985 and 1990 census, and not
at all between 2005 and 2010. Plot census methods are described in Condit (1998). See
Appendix 14.1 for details on the AGB calculations. Three classes of problematic
measurements were screened: (1) hemiepiphytes (strangler figs) for which diameter
measurements do not reflect basal area; (2) stems that were extreme outliers in biomass
change; and (3) stems whose height of measurement changed. Biomass changes for
hemiepiphytes were simply set to zero. Biomass changes for the other classes of
screened individuals were either set to zero or changed to the value obtained from a
biomass growth model fitted to non-screened data.

Screened stems and their treatment

Hemiepiphytes1
|ΔAGB|
outliers2

POM
change3

ΔAGB 1985–1990
(MgC ha−1 yr−1)

ΔAGB 2005–2010
(MgC ha−1 yr−1)

−0.61 (−1.22 −0.05) −0.46 (−1.04 −0.08)
ΔAGB =0 −0.58 (−1.26 −0.04) −0.47 (−0.98 −0.08)
ΔAGB =0 ΔAGB =0 0.04 (−0.48 0.47) −0.43 (−0.99 −0.08)
ΔAGB =0 Model

growth4
0.13 (−0.31 0.55) −0.43 (−0.89 −0.06)

ΔAGB =0 ΔAGB =0 ΔAGB =0 0.49 ( 0.04 0.89) −0.28 (−0.78 0.07)
ΔAGB =0 Model

growth4
Model
growth4

1.31 ( 0.83 1.70) −0.07 (−0.54 0.27)

1Hemiepiphytes encompass six species of strangler figs: Ficus bullenei, F. citrifolia, F. colubrinae,

F. costaricana, F. pertusa and F. popenoei. In total, there were 36 individuals of these species that
were alive in one or more censuses between 1985 and 2010, and between 12 and 20 alive in any
given census.
2Stems that had a rate of change in biomass (increase or decrease) of more than 2 MgC yr−1, and
that were not recorded as stem breaks or point of measurement changes.
3Change in the point of measurement between the two censuses greater than 0.2 m.
4AGB change substituted with the value obtained from the fits of non-screened trees to a third-
order polynomial model Y = a3X

3 + a2X
2 + a1X + a0 where Y = log(AGBt+1 – AGBt) and X = log(AGBt).

All individuals of all species (except the hemiepiphytes) were combined in this model; individuals
were binned into 50 classes of equal numbers of elements, and the logs of the class-wise arithmetic
means were regressed against each other to fit the coefficients ai.
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especially on the potential to introduce systematic errors (i.e. biases) in esti-

mates of biomass and biomass change.

14.2.2.1 Ordinary measurement errors and data cleaning
Most past studies of biomass change have used some sort of data cleaning

procedure to identify presumed erroneous values and ‘correct’ them. Past

approaches to error identification most typically involved absolute cutoffs

for diameter growth rates, with more extreme values considered unrealistic

and thus necessarily erroneous. For example, diameter increases ofmore than

35 mm yr−1, 40 mm yr−1 or 45 mm yr−1, or decreases of more than 5 mm yr−1,

have been flagged for correction (Chave et al. 2003, 2008; Lewis et al. 2009b;

Phillips et al. 2009). Wheremultiple census data are available, these presumed

errors are corrected by interpolation or extrapolationwhere possible. In other

cases, they are set to themean (Chave et al. 2008; Phillips et al. 2009) ormedian

(Lewis et al. 2009b) diameter growth rates for trees in the same diameter class.

Despite the ubiquity of such procedures, we know of no study that has

systematically evaluated their potential influence on estimates of forest bio-

mass change. On first principles, these procedures may well reduce certain

kinds of random and systematic errors – but as we show below, this reduction

may come at the cost of the introduction of other systematic errors. How large

are the systematic errors introduced by data cleaning? Is data cleaning a

worthwhile procedure given potential trade-offs between correcting one

kind of error and introducing another?

A key problem of error identification is that it is difficult, if not impossible,

to design error detection criteria that exactly balance the correction of pos-

itive and negative errors in diameter growth, and thus avoid inducing system-

atic biases. It is often easier to identify large negative errors, because large

decreases inmeasured diameters are biologically implausible unless there are

concurrent observations of stem breaks. In contrast, large positive errors may

go undetected because it is possible for some individuals to grow very quickly.

If measurement errors are symmetric, but negative errors are more likely to

be detected and corrected, then this introduces a positive bias on biomass

change estimates. Identifying appropriate thresholds to balance positive and

negative error correction in diameter growth exactly is possible in principle

but very difficult in practice. Thus, such thresholds will almost inevitably

introduce systematic errors in estimates of biomass change.

A key problem in gap-filling erroneous measurements is to ensure that the

corrections do not introduce systematic errors in statistics of interest. There is

a large existing literature on gap-filling methods and their relative perform-

ance in terms of bias and rootmean square error, RMSE (e.g. Moffat et al. 2007),

including analyses specific to individual tree growth (Sironen, Kangas &

Maltamo 2010; Sironen et al. 2008). Nearest-neighbour imputation methods,

394 HELENE C . MULLER-LANDAU ET AL .



in which the missing value is substituted with the mean from the k nearest

neighbours as defined by distance in a space of traits of interest (e.g. diameter,

forest type), emerge as particularly useful, with minimal bias and RMSE

(Sironen, Kangas & Maltamo 2010). The most common gap-filling method

applied in tropical biomass studies – substituting the mean diameter growth

for similarly sized trees – is in some sense a very limited application of this

method, in which size class is the only distance metric considered. However,

gap-filling with mean diameter growth for reference populations is problem-

atic when the goal is calculation of biomass growth, because of the non-linear

relationship between diameter and biomass and the skewed distribution of

growth rates among individuals. Thus, for example, gap-filling with mean

diameter growth leads to systematic 10% overestimation of individual tree

biomass growth in a test with BCI data, even though this method produces

unbiased estimates of diameter growth. In contrast, substituting with mean

biomass growth will produce unbiased estimates of biomass growth – but

systematically underestimate diameter growth. Because mean growth is typ-

ically larger than median growth, substituting median biomass growth will

underestimate biomass gain (e.g. by 40% in a test with BCI data). The use of

median diameter growth could overestimate or underestimate biomass

growth, depending on the statistics of the target population. In sum, the

gap-filling algorithms that have been employed to date in tropical forest

biomass change studies have almost certainly introduced systematic errors

that bias resulting estimates of total biomass change.

The importance of the resulting systematic errors will vary depending not

only on the algorithm, but also on patterns of diameter growth at the site.

Here, we examine what biases result from commonly used (1) error detection

and (2) gap-filling algorithms when applied to the BCI data for 2005–2010.

First, we consider the effects of absolute diameter growth thresholds for

error identification. On BCI, the 30 stems that decreased in diameter by less

than 5 mm yr−1 between 2005 and 2010 together account for a decrease of

0.153MgC ha−1 yr−1, whereas the 25 stems that grew bymore than 40mmyr−1

together contribute an increase of 0.133 MgC ha−1 yr−1, together contributing

net biomass change of −0.019 MgC ha−1 yr−1. (These calculations exclude

stems that had a change in point of measurement or a break below the

measuring point.) Changing all their growth rates to the mean biomass

growth rates for similar diameter stems increases net biomass change by

0.019 MgC ha−1 yr−1.

Second, we examine themost commonly used gap-filling procedure –mean

diameter growth. As mentioned previously, this tends to overestimate mean

biomass growth of individual trees on BCI by 10%. Suppose that this correction

is applied to 1% of trees (Phillips et al. 2009 apply such a correction to 0.9% of

trees in their analyses). Applying this correction to 1% of stems on BCI
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upwardly biases biomass growth estimates by less than 0.005 MgC ha−1 yr−1,

assuming no bias in error detection. Thus, on BCI, unbalanced error detection

is more problematic than biased gap-filling algorithms in terms of the size of

resulting biases in biomass change, but both overall biases are relatively

small. This suggests, consistent with the results in Table 14.2, that data clean-

ing for trees whose diameter is measured at the standard height is not amajor

source of systematic errors at least for the BCI 2005 and 2010 census data

(although it may be important in other cases, e.g. the BCI 1985–1990 data).

(Trees measured at non-standard heights, which we examine in the next

section, appear to be a much bigger source of errors.)

Although effects on BCI are modest, we argue that there remains a need for

improvement in data cleaning procedures for studies of biomass change.

There are three distinct types of approaches that would yield unbiased esti-

mates of biomass changes. The first approach would be to apply unbiased

error detection and gap-filling algorithms. This approach could draw on the

large literature on such issues in forestry and other disciplines (Moffat et al.

2007; Sironen et al. 2010). Analyses should specifically evaluate bias (e.g.

Sironen et al. 2010). Application of these algorithms, especially for error

detection, will have to be tailored to individual sites and their growth pat-

terns. A second approach would be to analyse biomass change using Bayesian

methods that explicitly included probability distributions of measurement

errors, and explicitly modelled observed growth as the convolution of true

growth and measurement errors. Such models would greatly benefit from

incorporation of data that specifically constrained the measurement error

distribution, such as remeasurement data. Metcalf et al. (2009) provide an

excellent example of this approach, applied to analyses of tree growth. A

third approach would be to eschew data cleaning altogether, and instead

quantify the impact of measurement errors on statistics of interest, and

then correct those statistics accordingly after they are calculated from uncor-

rected data. This last approach is in many ways the simplest, and should be

successful in eliminating systematic errors. It will, however, leave potentially

large random errors.

We now apply this last approach to BCI, where a large dataset on remeasure-

ments of the same stems allows us to quantitatively assess the impacts of

measurement errors on biomass. In the 1995, 2000 and 2005 censuses, diam-

eters of 1562 randomly chosen stems were independently remeasured within

30 days of the original measurement. Rüger et al. (2011) fitted this error

distribution with a sum of two normal distributions (both centred at zero;

these errors were purely randomnot systematic). The first distribution, which

has 97.24% of the weight, describes small errors that are proportional to tree

diameter (standard deviation sd = 0.927 mm + 0.0038*dbh mm); the second

describes larger errors that are independent of diameter (sd = 25.6 mm). We
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used aMonte Carlo approach to assess the impact of suchmeasurement errors

on biomass and biomass change. In particular, we assumed that the 2005 and

2010 BCI census data represent the true diameters, and we examined how

applying additional measurement errors drawn from the measured distribu-

tion of measurement errors changed estimates of biomass and biomass

change. We found that adding such measurement errors led to slight over-

estimation of biomass, by an average of 0.14% (bootstrapped 95%CI 0.07, 0.21),

with no significant effect on biomass change. Thus, for BCI at least, simply

ignoring all measurement errors, and leaving data uncorrected, is expected to

have a trivial systematic impact on estimates of biomass and biomass change –

although the uncorrected measurement errors will introduce random errors.

Clearly, if measurement error rates were higher, as theymay be at some other

sites, the impact of measurement errors alone would be larger, and may

induce larger systematic errors. For example, if the dbh measurements of 1%

of stems in the BCI data have a pair of adjacent digits switched, this results in

1.7% systematic overestimation of biomass. One could quantify the resulting

systematic errors through exercises such as these to correct estimates of total

biomass and total biomass change calculated from uncorrected individual

measurements.

14.2.2.2 The special challenge of buttressed trees
One of the greatest potential sources of error in estimates of biomass change

is the measurement and analysis of buttressed trees (Clark 2002; Sheil 1995).

We use ‘buttressed trees’ to refer to all trees whose diameters aremeasured at

heights above 1.5 m because of buttresses or irregular trunks, and whose

heights of measurement are likely to increase over time. The standard meas-

urement height is 1.3 m, and stems with small irregularities only in this area

are measured slightly above or below the standard point (1–1.5 m). Thus, we

chose 1.5m as a threshold to capturemainly trees with buttresses or irregular

trunks. Trees measured at heights above 1.5 m constituted 59% of estimated

tree biomass on BCI in the 2010 census, although these trees represented just

1.4% of stems. Thus, estimates of biomass change and productivity for BCI are

very sensitive to the algorithmsused to calculate biomass changes for these trees.

Diameter–biomass relationships are likely to differ for buttressed trees, yet

these differences are not reflected in current allometric equations. Individual

tree biomass is typically estimated from allometric equations relating diam-

eter, wood density and sometimes tree height to biomass, with diameter

measured either at 1.3 m height or ‘above buttresses’ (Chave et al. 2005).

Because trunk diameter generally declines (i.e. tapers) with increasing height,

we would expect that trees whose diameter is measured at a height above

1.3 m will have smaller diameters for the same biomass, or equivalently,

higher biomass for the same diameter. Consequently, biomass–diameter

DETECT ING AND PROJECT ING CHANGES IN FOREST B IOMASS 397



relationships for buttressed trees are expected to deviate systematically from

those for non-buttressed trees, when the diameters in the former case are

measured above buttresses and above 1.3 m height, while diameters in the

latter case are measured exactly at 1.3 m height. Surprisingly, we know of

no study that has tested for such systematic differences, nor any published

dataset that would allow such tests to be made.

As a consequence, buttressed trees represent a large potential source of

systematic error in estimates of biomass and biomass change. The application

of the same biomass allometry equations to buttressed and unbuttressed trees

is likely to lead to systematic underestimation of biomass in buttressed trees,

and systematic overestimation in unbuttressed trees. These two opposite types

of errors will cancel exactly at the plot level if the frequency of buttressed

trees in the plotmatches the frequency of buttressed trees in the dataset used to

develop the biomass allometry equations, and if diameters of buttressed trees

are measured in the same way in both datasets. Plot-level biomass will tend to

be systematically overestimated in stands with lower frequencies of buttressed

trees, and systematically underestimated in stands with higher frequencies of

buttressed trees, assuming diameters of buttressed trees are measured in a

consistent manner across the plots and in the biomass calibration dataset.

The lack of standard methods for determining measurement heights on

buttressed trees creates additional potential for systematic error. For exam-

ple, if diameters of buttressed trees aremeasured at greater heights in the plot

than in the biomass calibration dataset, then biomass will be systematically

underestimated even if the frequency of buttressed trees is identical. Such

differences in measurement methods for buttressed trees are quite likely. For

one-time measurements such as those for calibrating biomass equations,

diameters are typically measured directly above buttresses, which presum-

ably means within 10–20 cm of the top of buttresses. In permanent plots

where repeat censuses are planned, diameters are typically measured at

greater heights to ensure that the measurement point will remain above

buttresses in the next census; an oft-used rule is to measure 50 cm above the

top of the buttress (Condit 1998). In general, there is no quantitative, generally

accepted, standard definition of the top of the buttress, or of the distance

above the top of the buttress at which diameters should be measured, and

thus it is to be expected that different field teams and technicianswouldmake

diameter measurements at different heights given the same tree form. The

emergence of a universal standard (perhaps 50 cm above as in Condit 1998),

applied to both biomass calibration equations and plot censuses, would

remove this potential source of systematic error.

On BCI, the proportion of trees measured at heights above 1.5 m has

increased greatly over time (Table 14.3). We know that some of these shifts

reflect changes in measurement procedures: in the first census, all trees were
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measured at 1.3 m even if this was around buttresses, whereas in the second

census buttressed trees were measured directly above buttresses, and in the

third census, the protocol was changed to place measurement points on

buttressed trees high enough that they would be expected to remain above

buttresses in the following census even after growth. It is more difficult to

interpret the continued, more modest, increases in the proportion of stems

measured at height above 1.5 m between 1990 and 2010. These increases are

likely in part to reflect increasing conservatismon the part of the field crew, as

they sought for ever more round points on the bole, or heights that are ever

more certain not to be affected by buttresses in the subsequent census, as well

as the fact that measurement points are moved up but never down. However,

there is also the possibility that there has been some real increase in but-

tressed trees, and/or heights of buttresses on trees, on BCI. Regardless of the

causes of the increase in height of measurement, the increasing frequency of

diameter measurements at heights above 1.5 m would be expected to intro-

duce a negative bias on estimated biomass change on BCI, because of the way

the diameter measurements interact with the biomass allometry equation. A

larger and larger proportion of trees fall into the category of systematic

underestimation of biomass, while an ever smaller proportion fall into the

category of systematic overestimation of biomass.

In principle, it should be possible to correct for the biases in biomass and

biomass change that are associated with measurements of diameters at

heights above 1.3 m. One possibility would be to replace ‘diameter at 1.3 m

or above buttresses’ with ‘diameter at 1.3 m, measured or estimated based on

Table 14.3 Number, frequency, and proportion estimated aboveground biomass of tree
stems measured above 1.5 m height in the Barro Colorado Island forest dynamics plots
in different censuses.

Stems with height of measurement >1.5 m

Census year Number
Proportion of
total stems ≥1 cm

Proportion of
total stems ≥10 cm

Proportion of
total biomass1

1982 0 0.00% 0.0% 0.0%
1985 1302 0.48% 6.0% 28.4%
1990 2076 0.72% 9.3% 48.5%
1995 2456 0.92% 10.8% 53.0%
2000 2786 1.12% 12.3% 53.7%
2005 2872 1.17% 12.8% 54.3%
2010 3373 1.37% 14.8% 58.6%

1Here biomass was calculated by substituting the observed maximum height diameter
measurement directly into the biomass allometry equation (no data cleaning, no taper).
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taper’ in biomass allometry equations. Taper equations, such as those used by

Metcalf et al. (2009), could be used to calculate equivalent diameters at 1.3 m

height from diameters measured above buttresses. Given the right taper

functions, we would expect that biomass–diameter datasets constructed

under this definition would show no systematic differences between but-

tressed and non-buttressed trees. If there were no systematic differences,

then one could construct and apply biomass allometry equations without

regard to the frequency of buttressed trees. Indeed, in this case, equations

could be constructed simply from data on non-buttressed trees, which might

be the more practical approach, as older datasets on biomass of buttressed

trees do not necessarily include necessary information on the height of

diameter measurement for buttressed trees.

We use the BCI dataset for 2005–2010 to illustrate the potential impact of

measurement practices for buttressed trees on estimates of biomass and

biomass change (Table 14.4). In the 2010 census, 962 stems were measured

at two heights. If we use the diameter measurement at the lower height in the

biomass allometry equation, total biomass is 4.2 MgC ha−1 larger than if we

use the measurement at the greater height (Table 14.4). Inferring diameter at

1.3 m based on taper should in principle make the biomass estimates less

sensitive to the exactmeasurement height, decreasing the difference between

these estimates. We used the taper equation DBH = Deα(h – 1.3), where D is the

measured diameter and h is the height of the measurement, a function

previously fitted to empirical data on diameters in similar height ranges for

five tropical tree species by Metcalf et al. (2009), and values of α that spanned

the range for these five species. At higher taper values, biomass estimates

were substantially higher (Table 14.4). Biomass estimates were essentially

identical between minimum and maximum height diameter measurements

for α = 0.055, which suggests that this value might best represent average

taper in these trees. However, use of realistic taper functions and resulting

estimates of equivalent diameters at 1.3 m height with currently available

biomass equations (themselves based on dbh or diameter ‘above buttresses’)

will invariably lead to systematic overestimation of biomass, with the degree

of overestimation dependent on the relative representation of diametermeas-

urements above buttresses in the biomass calibration datasets.

The treatment of buttressed trees had an even bigger relative effect on

estimates of biomass change for BCI (Table 14.4). When we used measured

diameters directly in the biomass equation (taper = 0 in Table 14.4), estimates

of biomass change varied from −0.56 to 0.31 MgC ha−1 yr−1 depending on the

choice of point of measurement (POM): the largest decrease was found when

theminimum POMwas used in each census, and the largest increase when the

same POMwas used (where available) and themaximumPOMotherwise. Using

the diameter from the same POMacross two censuses provides better estimates
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Table 14.4 Effect of treatment of diameters measured at non-standard heights on
estimates of aboveground tree biomass and biomass change on Barro Colorado Island,
Panama. Diameter measurements were available at two (or rarely more) measurement
heights for 948 stems in 2005 and 962 stems in 2010 (less than 0.4% of all stems in each
census), generally in cases where the measurement point was being moved upwards to
ensure that it would remain abovebuttresses in the next census. The standard treatment for
biomass in most studies is to use the lowest available good diameter measurement above
buttresses or irregularities (here ‘minimum’), and to insert this diameter measurement
directly into the allometry equations (here taper = 0). The standard for estimates of biomass
change is to use the same height ofmeasurement across the two censuses if available, and
the lowest good measurement when there are multiple options (here ‘same and min’). The
default in the BCI database is always to use the maximum diameter measurement available
(‘maximum’). Alternatively, a taper equation can be used to estimate equivalent diameter at
1.3mheight, and this equivalent diameter can be used in the biomass equation.We use the
taper equation D1.3 = Die

−α(hi–1.3), which Metcalf et al. (2009) previously fitted to empirical
data on diameters in similar height ranges for five tropical tree species; values of α are
chosen to span the range for these five species. Noother data cleaningwas done. Details of
methods for calculating biomass are given in Appendix 14.1.

Taper parameter (α, units of m−1)

POM choice 0 0.01 0.02 0.03 0.06 0.12

AGB (MgC ha−1) in 2010

Minimum1 147.2 153.0 159.3 166.2 190.8 262.3
Maximum2 143.0 149.4 156.4 164.0 191.3 271.6

ΔAGB 2005–2010 (MgC ha−1 yr−1)

Minimum1 −0.559 −0.458 −0.340 −0.206 0.322 2.171
Maximum2 −0.463 −0.389 −0.307 −0.216 0.123 1.238
Same and min3 0.217 0.197 0.175 0.152 0.074 −0.122
Same and max4 0.312 0.275 0.234 0.188 0.016 −0.521

1Where diameter measurements were available from multiple heights in a given census, the
diameter with the minimum height of measurement was used. Under this rule, 1540 stems had a
change in diameter measurement height between 2005 and 2010.
2Where diameter measurements were available from multiple heights in a given census, the
diameter with the maximum height of measurement was used. Under this rule, 1374 stems had a
change in diameter measurement height between 2005 and 2010.
3Where the stem was alive in both censuses, diameter measurements that were made at the same

height in both censuses were used when available. In other cases, the diameter with theminimum
height of measurement in that census was used. Under this rule, 976 stems had a change in
diameter measurement height between 2005 and 2010.
4Where the stem was alive in both censuses, diameter measurements that were made at the same
height in both censuses were used when available. In other cases, the diameter with themaximum
height of measurement in that census was used. Under this rule, 976 stems had a change in
diameter measurement height between 2005 and 2010.
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of the biomass change of the individual trees in question, but introduces

systematic errors in biomass change at the plot level, because trees are then

measured at different heights relative to the tops of upwardly growing but-

tresses in the different censuses. When we calculated equivalent diameter at

1.3 m based on taper equations, and used this diameter in the biomass allom-

etry equations, biomass change went from negative to positive as the taper

parameter α increased (Table 14.4). This result is consistent with the fact that

the later census had a higher proportion of trees with higher POMs. There was

no single taper value for which all four POM choices led to similar values for

biomass change; overall the standard deviation among the values was lowest

for α = 0.05, at which point the mean estimate was 0.076 MgC ha−1 yr−1.

In the absence of better allometric data for buttressed trees, it is difficult if

not impossible to say whichmeasurement and analysis protocols produce the

best estimates of plot-level biomass and biomass change, but it is clear that

current standard practices introduce systematic errors. Given that virtually all

tree boles taper, we recommend that height of measurement be recorded for

any diameter measurement taken at a non-standard height. Explicit treat-

ment of height of diameter measurement in future biomass allometry meas-

urements, combined with data on height of diameter measurements, would

allow large reductions in systematic errors associated with buttressed trees.

Studies of trunk taper on buttressed species in the range of heights typically

used for measurement would also be useful. Ideally, analyses should incorpo-

rate information on taper as well as diameter measurements at one or more

non-standard heights to infer true biomass growth (Metcalf et al. 2009). In the

long run, an even better approach might be to measure trees with buttresses

and those liable to develop buttresses at a standard height that remained

above buttresses on most if not all trees (e.g. 5 m, 8 m), and combine these

with allometric equations for biomass of buttressed trees based on diameter

measurements at such heights. Such an approach is already used in Finland,

where standard forest inventory practices include measurements of diam-

eters at 6 m height, measurements that are taken from the ground using a

device called the Finnish caliper.

14.3 Projecting biomass change
Observations of biomass change in forests provide critical evidence regarding

the question of current effects of global change on forests, but they do

not provide clear insights into future biomass change. The simplest assump-

tion – that change in a given forest will continue at themost recently observed

rate – is obviously wrong when projecting for 50 or more years. The next

simplest assumption, of linear extrapolation based on two or more rates of

change, is also obviously wrong on longer time scales. Another approach is

clearly needed to project how biomass will change in the medium and long
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term. In general, there are two broad classes of strategies that can be

employed: phenomenological models and mechanistic models.

In the following subsection, we present a phenomenological approach for

short- and medium-term projections of biomass, based on Markov chain

models and observed small-scale biomass transition probabilities.

14.3.1 Markov chain models of biomass change
AMarkov chainmodel captures stochastic transitions between states (here, tree

biomass in small forest plots) with a matrix of transition probabilities. First-

order Markov chain models were first used to model successional changes in

species composition and/or vegetation type in the 1970s (e.g. Horn 1975; Usher

1979; Waggoner & Stephens 1970). Their application in this context was

criticised for the models’ inability to capture historical and spatial dependence

of succession (Facelli & Pickett 1990). In particular, the simplest Markov chain

models assume that (1) transition probabilities dependonly on the current state

not on past states (thememory-less property); (2) transition probabilities do not

vary in time or space (stationarity); and (3) transitions in different cells are

independent (spatial independence). More complex models can relax these

assumptions, but the data needed to parameterise them increase accordingly,

and even the most basic models require extensive data on observed transitions

for parameterisation (Facelli & Pickett 1990). Thus, Markov chain models were

superseded as more mechanistic gap models of succession were developed for

temperate forests, models that simultaneously predicted changes in species

composition, forest structure and forest dynamics (Shugart 1984). However,

these mechanistic models require extensive, species-level information on indi-

vidual growth, mortality, and recruitment and how this varies with gap age, or

in later models, neighbourhood (Pacala et al. 1996). Similar models have been

constructed at the functional type level for some tropical forests (e.g. Chave

1999), but we lack the information needed to build such mechanistic models

for most sites. This suggests a reconsideration of the ‘black box’ approach of

Markov chain models, especially in cases where extensive transition data are

available to parameterise such models.

A Markov chain model for forest biomass can be parameterised from recen-

sus data from a large plot ormany small plots.With this approach, the data on

biomass and biomass changewithin small subplots are used to parameterise a

linear matrix model that describes the dynamics of the probability distribu-

tion of biomass. This approach captures gap dynamics, as small subplots can

transition in and out of low-biomass states with realistic probabilities based

on the observed relationship of biomass to biomass change. Kellner et al.

(2009) used this approach to model transitions in canopy height, a proxy for

forest biomass, parameterising theirmodelwith airborne LiDAR data for large

areas. We argue that such models provide a useful basis for projecting
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biomass distributions (and thus mean biomass) forward into the future under

the assumption that transition probabilities continue as currently observed.

Toparameterise aMarkov chainmodel for biomass change,wefirst divide the

range of observed biomass densities into N classes. Let V(t) be a vector of length
N, with elements vi(t) corresponding to the proportion of subplots having bio-

mass density in class i at time t. LetM be a transition probability matrix, whose

elements mij give the probability that a subplot that was in state j transitions to

state i in one time step. Then, V(t + 1) = MV(t). (That is, following the standard

rules of matrix multiplication, each element viðtþ 1Þ ¼ P
j
mijvjðtÞ.) ProvidedM

is not singular, there exists a single equilibriumprobability distributionV* such
that V* =MV*, and this equilibrium can be obtained analytically from the first

eigenvector ofM (Anderson & Goodman 1957). That is, over time, given a fixed

transition probability matrix M, any and every initial frequency distribution

that is non-zero will converge on the equilibrium.

We parameterised a Markov chain model for the biomass density of

10m × 10m subplots on the Barro Colorado Island 50-ha plot. We first divided

the 50-ha plot into contiguous 10 m × 10 m subplots (5000 in total), and

calculated total biomass in each subplot by summing estimated biomass of

each tree within it. Individual tree biomass was calculated from uncorrected

diameter data for the highest diameter for each stem in each census using a

pantropical allometric equation (Chave et al. 2005) (details in Appendix 14.1).

We log-transformed total biomass in each subplot (to achieve normality), and

used a two-dimensional Gaussian kernel density estimator with fixedwidth to

estimate the continuous joint probability distribution (Haan 1999; Scott 1992;

Silverman 1986) for log biomass density at census t and census t + 1. This

resulted in estimates of pij, the probability that a given 10 m × 10 m plot is in

biomass density class j at one time step and in biomass density class i during

the next time step. The Gaussian kernel estimator essentially obtains a

smoothed version of the empirically observed joint probability surface

(Figure 14.3). The transitionmatrix is calculated as the conditional probability

from the joint probability density function:

mij ¼
pij
pj

¼ pijP
kpkj

ð14:1Þ

where pj is the marginal probability that a subplot has biomass density class j

in the first census interval. The matrix M is independent of t because of the

memory-less property of Markov chains.

The advantage of the Gaussian kernel estimator is that the probability

density function (PDF) is independent of the discretisation of the probability

domain (here the number of biomass categories), in contrast to a histogram or
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box counting method. This allows us to use a large number of biomass

categories without increasing errors in estimates of the transition probabil-

ities. The use of a large number of categories improves estimates of dynamics

(Zuidema et al. 2010). The PDF is dependent on the width of the Gaussian

kernel estimator, which has a role similar to the bin size for box counting

approaches. The width of the Gaussian kernel estimator is critical for estimat-

ing the PDF and is chosen as a best compromise between minimising the bias

caused by smoothing (which increases for large width, causing excessive

smoothing of the peaks of the distribution) and minimising the variance

(which increases for small width in areas where little information is present,

causing noise at the tails of the distribution) (Haan 1999). In our case, we use

100 classes (from 0 to 10 on a log scale of MgC ha−1) and the width of the

estimator was 0.25. All analyses were done in MATLAB (Version 7, The

Mathworks Inc.).

We took advantage of the six censuses, and thus five census intervals, at

BCI, which allowed us to increase the sample sizes used to estimate transition

probabilities and also to investigate temporal variation in the transition
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Figure 14.3 Ensemble joint probability density function of biomass density over two

successive census intervals, t and t + 1, estimated from transitions for all 5-year census

intervals between 1985 and 2010 using a Gaussian kernel estimator (see text), and

using the raw census data without ‘data cleaning’ or correction for increasing heights

of measurement. Correcting for increasing heights of measurement over time would

increase biomass in later censuses relative to earlier ones, and thus alter transition

probabilities.
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matrix. We computed five separate 5-year transition probability matrices, and

calculated a mean transition matrix by taking arithmetic means of joint and

marginal probabilities for each element of the five matrices. The equilibrium

mean biomass was computed from the equilibrium probability distribution of

log biomass classes, P*. The equilibrium mean biomass was 140 MgC ha−1,

which is slightly higher than the most recent census (137.5), and lower than

other censuses (Figure 14.4). We also explored the influence of stochastic

variation in transition probabilities by simulating biomass dynamics over

time when one of the five transition matrices was randomly selected at each

time step. We found that over 1000 iterations (equivalent to 5000 years given

our 5-year time step), this led to biomass fluctuations over a range from 133 to

147, and a mean value of 140 MgC ha−1 (Figure 14.5). The projected stable

equilibrium from the mean transition matrix lies within the 95% confidence

intervals of the PDF from the simulations (Figure 14.4B).

Analysis of the Markov chain model for biomass transitions on BCI, when

biomass is calculated without correcting for changing points of measurement (see

previous section), thus suggests that the plot is currently at its dynamic

equilibrium in biomass given current environmental conditions, and is not

undergoing directional change. It further suggests that variability among
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subplots for the different census intervals on BCI. (B) The PDF for the projected stable

equilibrium and its 95% confidence interval from stochastic simulations, comparedwith

the average observed PDF. Biomass was calculated using the raw census data without

data cleaning or correction for increasing heights of measurements.
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censuses may be explained by stochastic temporal environmental variation.

This is consistent with the similarity in the biomass distribution across all six

censuses evaluated here (Figure 14.4A), and with the lack of consistent direc-

tional change observed in the past 25 years (Chave et al. 2003, 2004). However,

it is important to note that this approach has clear limitations, related to the

limitations of the underlying data. The current analysis uses biomass esti-

mated in the standard way – by using observed diameter at the maximum

height of measurement in a given census, and plugging this directly into

biomass equations without any adjustment for height of measurement.

Monitoring is unlikely to capture rare, but potentially large, transitions

such as major disturbances, and if these are missed in monitoring, their

effects will also be absent from the resulting model. Further, as we showed

above, estimates of biomass change can vary considerably and systematically

with error correction routines, and with procedures for dealing with diam-

eters measured at non-standard heights. Correcting for the increasing heights

of measurement in later censuses would increase biomass in later censuses

relative to early ones, thus leading to transitionmatriceswithmoreweighting

towards biomass increases, and thereby increased equilibrium biomass rela-

tive to current and past observed biomass. We are currently collecting field

data on taper in order to develop accurate corrections for increasing heights

of measurements, and will revisit this analysis once those data are in hand.

The Markov chain approach has some clear limitations, corresponding to

the key assumptions stated above (Facelli & Pickett 1990). First, the first-order

Markov chain models that we parameterised assume that transitions depend

−
M

g
C

Figure 14.5 Stochastic simulations of the Markov chain model of BCI, in which one of

the five projectionmatrices (corresponding to one of the five 5-year census intervals) is

randomly selected at each iteration. The dashed line indicates the deterministic

equilibrium value. The projectionmatrices were based on biomass calculated using the

raw census data without data cleaning or correction for increasing heights of

measurements.
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only on the current state of the system, and are invariant in space. Thus, for

example, all areas of low biomass have the same transition probabilities to

various higher (and lower) biomass states. In reality, some areas of low bio-

massmay represent arrested gap succession owing to liana tangles (Schnitzer,

Dalling & Carson 2000), or may be likely to stay in low biomass because of

habitat effects such as location in a swampy area (Chave et al. 2003). Second,

projections are made under the assumption that future transition probabil-

ities are distributed in the same way as previously observed probabilities, in

our case choosing randomly among the observed census intervals. Thus, this

approach inherently cannot capture influences that are causing ongoing

changes in transition probabilities – it only informs us about the logical

endpoint of extrapolating current transition probabilities into the future.

Increasing abundances of lianas, increasing atmospheric carbon dioxide and

changing climates (Lewis et al. 2009a), among others, may be directionally

changing transition probabilities over time, effects that are not reflected in

projections of Markov chain models parameterised from past observed tran-

sitions. Third, the model assumes that biomass changes in adjacent subplots

are independent. Our own analyses found no spatial autocorrelation in bio-

mass change within the plot (Figure 14.2), suggesting that this assumption is

appropriate for our site. The direct causal influence between patches is, in

general, likely to be small most of the time; although gaps are commonly

believed to be contagious and may be modelled as such (Sole & Manrubia

1995), a recent study found that areas next to existing canopy gaps have

disturbance rates that are similar to those of areas far from existing gaps

(Jansen, Van der Meer & Bongers 2008). On the other hand, large-scale dis-

turbances, e.g. from hurricanes, blow-downs, fires and drought, are generally

spatially structured with adjoining areas likely to transition to low-biomass

states at the same time, whether or not they causally influence each other.

As we have shown here, parameterisation of Markov chain models for

biomass transitions within subplots is potentially a useful way to capture

gap dynamics and project future trajectories of biomass. This approach

requires data for a large and fairly uniform area to obtain reliable transition

matrices; large plots of 16–50 ha such as those in the CTFS/SIGEO (Center for

Tropical Forest Science/Smithsonian Institution Global Earth Observatories)

network are well suited to such analyses. Given that LiDAR-derived canopy

height metrics are well correlated with biomass in tropical forests (Asner et al.

2011), landscape-scale LiDAR data are also well suited to such studies. Kellner

et al. (2009) examined the canopy height distribution over 444 ha in a wet

tropical forest in Costa Rica using LiDAR, and found that the observed distri-

bution at 5 m grain is consistent with the stationary distribution of a Markov

model parameterised using the transitions observed over an 8.5-year interval.

Similar studies over larger areas would provide important information about
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whether and how tropical forest biomass is changing, and a first basis for

projecting future changes. Future work should explore how statistical power

is related to sample size (area and census interval) for this type of model. It is

important to keep in mind that this phenomenological approach only proj-

ects forward based on currently observed dynamics, and that it cannot cap-

ture the effects of potential future changes in dynamics due to further

changes in the environment.

14.4 Conclusions and recommendations
Forest biomass change in tropical forests is spatially variable, reflecting sto-

chastic local variation as well as deterministic influences of topography, soil

type, forest type, etc. Sampling uncertainty associated with stochastic local

variation contributes random error in estimates of biomass change. The

associated sampling errors can be quantified for individual sites by examining

spatial autocorrelation patterns and then bootstrapping appropriately over

subplots whose scale exceeds the local correlation length. When combining

data frommultiple sites differing in area and/or time interval, the appropriate

weighting depends critically on the relative magnitude of within- and among-

site variability, which in turn depends on landscape-level spatial patterns.

Sampling errors for ensembles of sites can be assessed by bootstrapping over

sites and subplots within sites (e.g. Chave et al. 2008). We recommend that

all studies of biomass or biomass change examine autocorrelation patterns

for the scales relevant to the study, and use this information to quantify

sampling errors and determine appropriate weighting schemes, if necessary.

Autocorrelation patterns are likely to differ among forests, and need to be

considered carefully in any given application. Ideally, their assessment would

be based on large-scale, fine-grained data such as that provided by airborne

LiDAR, but in the absence of such information, plot data themselves can be

used to assess this (e.g. through semivariograms).

Although sampling errors are inherently random, measurement errors and

data cleaning routines can introduce systematic as well as random errors in

estimates of forest biomass and biomass change. Even random ordinary diam-

eter measurement errors on non-buttressed trees can introduce systematic

errors inbiomass because of thenon-linear relationship of diameter to biomass.

Further, common error detection and gap filling algorithms can actually intro-

duce systematic errors in biomass change. On BCI, where measurement error

frequencies are fairly low, these effects are currently small, but they have the

potential to be larger depending on error rates and data cleaning practices (e.g.

in earlier BCI censuses). It is important that all studies carefully document data

cleaning practices, and describe these practices in publications in sufficient

detail that they can be reproduced. We further recommend that studies quan-

tifymeasurement errors, if at all possible; such information is extremely useful
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in quantifying any bias thatmay result frommeasurement errors, or changes in

measurement error rates over time, and in enabling corrections for such biases.

In general, data cleaning procedures should be carefully planned a priori; post

hoc development or adjustment of such procedures is problematic as it raises

the potential for conscious or unconscious biases towards expected results to

influence outcomes. Research is needed to thoroughly evaluate alternative

error detection and gap filling procedures for tropical forest biomass, and

develop general recommendations for procedures that induce no systematic

errors in key quantities of interest.

Trees whose diameter is measured above the standard height because of

buttresses or other stem irregularities constitute a large proportion of bio-

mass in tropical forests and create a very large potential for systematic errors

in biomass and biomass change. Their potential to introduce bias follows from

the interaction of current biomass allometry equations, which do not con-

sider height of measurement, with variation among sites and over time in the

heights of measurement. On BCI, different approaches to data analysis for

buttressed trees produce very large differences in estimates of biomass

change, including reversals in the sign of biomass change; at this time, it is

not clear which approach and which estimate are best. It is critical that the

methods for choosing measuring points and handling changes in measure-

ment heights are clearly documented and reported. We strongly recommend

that the height of diameter measurements always be measured, and that

publications provide statistics on the distribution of measurement heights

(and especially, any changes in this distribution over time, as seen on BCI).

Ideally, the height of the top of the buttress would also be recorded, because

existing biomass data often include only diameter measured immediately

above buttresses. We further recommend the development and application

of allometric equations that explicitly take the height of diameter measure-

ment into consideration, and thus automatically correct for non-standard

heights of measurement. Research that explicitly evaluates alternative

approaches in simulated datasets could make clear the best approaches for

obtaining unbiased estimates of biomass and biomass change for buttressed

trees and stands that contain such trees.

A key challenge in predicting the future trajectory of forest biomass change

is to control appropriately for the gap age distribution in the current dataset

and/or landscape (the gap age distribution reflects the disturbance history of

the site). Markov chainmodels for biomass offer a potentially useful means to

do this. They require data for many transitions for reliable parameterisation,

but this is within the realm of what is available for single large plots, such as

BCI, or collections of small plots. In general, Markovmodels are a worthy area

for future exploration, although it is important to keep inmind that these are

purely phenomenological models, and only provide the ability to extrapolate
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current dynamics to their equilibrium. A critical question we did not address

here concerns the confidence intervals on the probabilities and the projec-

tions of the Markov model; this is something that should be addressed in

future work. The quantities estimated as part of parameterising Markov

models are also themselves worthy of further examination – in particular,

global change in forest dynamics would be expected to be evident in direc-

tional changes in transition probabilities over time.

This chapter has focused almost entirely on aboveground biomass data from

fieldmeasurements, currently themain source of data on tropical forest carbon

pools. This is likely to change in the future, as airborne LiDAR and other remote

sensing tools become increasingly useful for quantifying biomass in tropical

forests (Asner et al. 2011; Mascaro et al. 2011b), and as measurements of below-

ground pools become more common. LiDAR metrics such as mean canopy

height correlate well with aboveground biomass in tropical forests (e.g.

Mascaro et al. 2011a), and thus LiDAR is well placed to provide information on

the spatial autocorrelation structure of biomass at landscape scales. Both LiDAR

and other remote-sensing tools can provide landscape-scale data on canopy

disturbance rates and the size distribution of disturbance events – critical

quantities for determining the true power of a given plot sampling effort

(Fisher et al. 2008; Gloor et al. 2009). However, most remote-sensing tools are

likely to have limited if any ability to detect small increases in biomass in high-

biomass forests (because most remotely sensed metrics saturate at high bio-

mass), limiting their usefulness for quantifying potential subtle changes in old-

growth forests. LiDAR, in contrast, can directly measure changes in canopy

heights (e.g. Kellner et al. 2009) and in the density of vegetation beneath the

canopy, both potential effects of global change that could affect biomass.

Belowground stocks in soil and roots are also gaining attention, with standard

methods increasingly applied across plot networks such as RAINFOR and

SIGEO/CTFS. Future research should quantify random and systematic errors

in associated estimates of carbon pools and fluxes.

Overall, ground plots remain an essential tool for quantifying impacts of

global change on tropical forests, especially old-growth forests. Carbon stocks

in these forests depend greatly on the diameters and heights of big trees,

which are still poorly measured remotely. However, measurement methods

and errors for ground plots can introduce random and systematic errors in

estimates of biomass and biomass change.Methods should always be carefully

documented and fully reported, and should include data cleaning procedures.

Measurement errors should be quantified. It has generally been assumed that

measurement errors and data correction routines have little or no effect. Here

we show that although some effects are small, others are potentially large,

and more worryingly, systematic. More investigation of the effects of these

errors and procedures is warranted.
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Appendix 14.1 Details of methods for calculating AGB and AGB
change for Barro Colorado Island
We calculated individual stem AGB (in kg dry biomass) using the moist forest

equation based on wood specific gravity (wsg) and diameter (dbh, in cm) from

Chave et al. (2005):

AGB¼wsg� exp �1:499 þ 2:148 ln dbhð Þ þ 0:207 ln dbhð Þ2 � 0:0281 ln dbhð Þ3
h i

We assumed dry biomass was 47% carbon (Martin & Thomas 2011), and we

report AGB and AGB change in MgC.

We calculated AGB change per year in a quadrat as the sum of AGB changes

per year for individual stems in that quadrat, thus taking into account differ-

ences in measurement intervals for different stems. Stems that were recruits

in the final census were assigned an initial AGB of zero and an initial date

corresponding to the date in which their quadrat was censused. Stems that

were newly dead in the final census were assigned a final AGB of zero and a

final date corresponding to the date in which their quadrat was censused.

We used species-level wood density values for 306 species, most obtained

from field measurements in central Panama (Wright et al. 2010 and S. Joseph

Wright, unpublished data), genus-level values for 12 species, and a plot-level

basal-area-weighted mean of 0.521 for the remaining taxa and unidentified

individuals (the later censuses have no unidentified individuals).
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