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Self-Similarity and Clustering in
the Spatial Distribution of

Species
Condit et al. (1) examined the spatial aggre-
gation of individuals of tree species in six dif-
ferent tropical forest sites. They found that most
species were aggregated, that rare species tend-
ed to be more aggregated than abundant ones,
and that smaller individuals of a species tended
to be more aggregated than larger individuals.
The observed clustering pattern, they pointed
out, was inconsistent with a random distribution
of individuals. We show here that the clustering
described in (1) is similar to that expected for a
species with a self-similar spatial distribution.
Such a distribution has been demonstrated to
correctly predict range characteristics across a
wide variety of taxa and spatial scales (2) and is
the analog to the community-level self-similar-
ity shown in (3) to be equivalent to the power-
law species-area relationship (SAR).

To measure the clustering of a species,
Condit et al. (1) used an index called the
relative neighborhood density, Vx1,x2

. For a
given species, Vx1,x2

is equivalent to the av-
erage density of conspecifics in the neighbor-
hood of individuals, normalized by the den-
sity of individuals of the species in the entire
plot:

Vx1, x2
5

^nx1, x2
&

Ax1, x2

n

A0

(1)

where ^nx1,x2
& is the number of conspecifics

located between a distance x1 and a distance
x2 from each individual, averaged over all
individuals of the species; Ax1,x2

is the area of
the annuli defined by the radii x1 and x2; and
n is the number of individuals of the species
in a plot of area A0 (4). If V . 1 at distances
that are short relative to the plot size, the
species is considered clustered, whereas V ,
1 at short distances indicates spacing or dis-
persion of individuals.

Self-similarity in the distribution of a sin-
gle species is defined as follows. Let A0 be a
rectangular plot whose dimensions have the
ratio =2, and let Ai 5 A0/2i be the size of
areas obtained from A0 by i shape-preserving
bisections (5). Given that a species is in a
particular area of size Ai, let ai be the average
probability that it is in at least a particular one
of the two Ai 1 1 contained in Ai. The distri-
bution of the species is self-similar, or scale
invariant, if ai 5 a is independent of i.

Self-similarity relates properties of the
distribution of a species at small scales to
such properties at larger scales. For example,

self-similarity relates n# i, here defined as the
average abundance of a species in the Ai that
it occupies, and n, the total abundance of the
species in the plot A0:

n# i §
n

# of Ai occupied by species
(2)

5
n

~2a!i

where a depends on the species but not on i.
Eq. 2 can be used to obtain an expression for
Vx1,x2

in terms of the a for each species. Let
Vi refer to Vx1,x2

in the case where x1 is the
radius of a circle of size Ai 1 1 and x2 is the
radius of a circle of size Ai. For this case, the
numerator in Eq. 1 can be closely approxi-
mated (6) by [1/(Ai 1 1)](n# i 2 n# i 1 1), and
hence

Vi 5
2

ai 2
1

ai 1 1 (3)

Vi can be expressed directly in terms of the
distance ri, defined as the average of the radii
of Ai and Ai 1 1. Note that Vi 5 (1/a)i V0,
where V0 5 2 2 (1/a), and that ri 5 (1/=2)i

r0, where r0 5 (1/2)(1 1 1/=2)(=A0/p). By
defining (=2)w § a, we can write

Vi 5 Cri
w (4)

where C 5 V0/r0
w.

The relative neighborhood density of self-
similar distributions (Fig. 1) has characteris-
tics in common with that of tropical forest
plots described in (1). It is largest at the
smallest scales and monotonically decreases
with scale at a rate which is largest at small
scales (7). Furthermore, since a increases
with abundance (8), V at small distances will
be largest for rare species. We also did a more
quantitative comparison of the relative neigh-
borhood density (as defined in Eq. 4) for 20
species chosen from (1) over a range of abun-
dances. For each species, a linear regression
was performed on the log-transformed data
(9). The linear regression analysis yielded r 2
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Fig. 1. Relative neighbor-
hood density, Vi, as a
function of distance, ri, as
expected for self-similar-
ly distributed species
with a 5 0.65, 0.75, 0.85,
and 0.95, in a plot of size
A0 5 50 ha. These values
of a correspond to spe-
cies with abundances n '
102, 103, 104, and 105,
respectively, if there are
300,000 individuals in the
plot and a simplifying as-
sumption is made (15).
The smallest distance
plotted is 5.3 m (this
point is off the graph for
a 5 0.65).
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Spondias mombin  n = 99
Chrysochlamys eclipes  n = 405
Garcinia intermedia  n = 4299

Fig. 2. Relative neighbor-
hood density, V, versus
distance, r, for three spe-
cies in (1). The lines are
the result of linear regres-
sion on the log-trans-
formed data (to eliminate
heteroscedasticity) (9): ln
V 5 480 2 1.17 ln r, r 2 5
0.914, a 5 0.667
(60.077) for Spondias
mombin; ln V 5 10.3 2
0.466 ln r, r 2 5 0.946,
a 5 0.851 (60.022) for
Chrysochlamys eclipes;
and ln V 5 1.95 2 0.128
ln r, r 2 5 0.959, a 5
0.978 (60.008) for Gar-
cinia intermedia, where
number in parentheses
are standard errors.
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. 0.9 for half of the species, and r 2 . 0.8 for
all but two (10). Fig. 2 shows three of these
analyses.

The exponent w in Eq. 4 is directly related
to the exponent y9 that appears in the rela-
tionship between the box-counting measure-
ment of range size R of a species and the area
A of the grid cell used to measure the range,
R 5 A0 (A/A0) y9. This range-area relationship
was observed by Kunin for British floral
census data (11) and derived from single-
species self-similarity in (2). The clustering
exponent w is related to the range-area expo-
nent y9 by

w 5 2 2 y9 (5)

Condit et al. could test Eq. 5 using their
tropical forest data.

The relative neighborhood density of trop-
ical tree species as described in (1) has char-
acteristics in common with the relative neigh-
borhood density expected of a self-similarly
distributed species, but community-level self-
similarity does not hold at the tropical forest
sites studied by Condit et al. (12, 13). How-
ever, although the notion is counterintuitive,
a group of species whose distributions are
individually self-similar is not expected to be
self-similarly distributed at the community
level (2). Therefore, the lack of community-
level self-similarity in the sites studied by
Condit et. al is not evidence against the pos-
sibility of species-level self-similarity in
those sites.

Annette Ostling
John Harte

Energy and Resources Group
University of California at Berkeley

Berkeley, CA 94720, USA
E-mail: aostling@socrates.berkeley.edu

Jessica Green
Department of Nuclear Engineering
University of California at Berkeley
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Response: The comment by Ostling et al. is
elegant and interesting—and, indeed, pre-
cisely echoes the content of several para-
graphs removed from the report by Condit et
al. (1) during the editing process. In the
following brief discussion, I paraphrase those
omitted paragraphs for the present context,
and offer several other observations on the
Ostling et al. comment.

If the neighborhood density function for a
species declined linearly on a log-log scale, then
the species’ distribution would be fractal and
scale-invariant because the intensity of aggrega-
tion would decay similarly at all scales. Astron-
omers describe the distribution of galaxies as

being fractal in exactly this way. Most individ-
ual species in the forests examined by Condit et
al. (1), however, did not display scale invariance
across the plots. More typically for common
species, neighborhood density declined at short
distances more rapidly than log-linearly, and
then leveled out. Other species showed more
gentle declines initially, then rapid declines at
greater distances.

Intriguingly, however, the aggregate behav-
ior of the whole communities—the sum of rel-
ative neighborhood density across species—
was indeed fractal, and showed very consistent
patterns across forests (Fig. 1). The most abun-
dant species had relatively gentle declines and
large x-intercepts, while rare species had steep
declines and smaller x-intercepts. (The x-inter-
cept on a log-log scale is the distance at which
V 5 1. Because V . 1 at short distances
signifies at least some degree of aggregation,
the x-intercept can thus be viewed as the clump
radius, or the distance at which clumping ceases
to be important.) The slope of these lines re-
flects the fractal dimension, D, because D is
equivalent to the slope plus two: D 5 2 indi-
cates spatial randomness; D 5 0 would be
complete clumping, with all individuals con-
centrated at a single point (2). D for an aggre-
gate of all common species varied from 1.65 to
1.83 in the six plots, and for aggregated rare
species varied from 0.86 to 1.41. D declined
smoothly with abundance at all plots, reflecting
the tendency for rare species to be more
clumped. Thus, in aggregate, the forests are
scale invariant, and this should reflect scale-
invariance in how species composition changes
through space, although Condit et al. (1) did not
investigate this.

Ostling et al. have cleverly shown how
their description of self-similarity corre-
sponds with the neighborhood function. This
is useful, because the method based on quad-
rant occupancy that they have used can be
associated with geographic ranges. Perhaps
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Fig. 1. Aggregate neigh-
borhood density func-
tions from the Pasoh 50-
ha plot. The steepest line,
with wiggles, is the ag-
gregate neighborhood
function for all 89 species
with 10 to 24 individuals
in 50 ha. The aggregate
function was calculated
by taking the arithmetic
average of all 89 individ-
ual neighborhood func-
tions. The gray line, with
intermediate slope, is the
aggregate neighborhood
function for all 73 species
with 200 to 299 individ-
uals, and the flattest line
the aggregate for the seven species with $5000 individuals. At each of the plots, species were
aggregated into abundance categories and the neighborhood functions were aggregated; in nearly
all cases, the aggregate functions were very close to linear on the log-log scale, and always steeper
for less common species.
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they can make something of the observation
in Fig. 1, that in an aggregate sense, the
communities appear to be quite precisely
self-similar.

Ostling et al. mention several tests that
could be done using our distribution data
for large forest plots; I would be happy to
make data sets available if they would like
to pursue the tests. And, finally, I present a
challenge: Can the theories that Ostling et
al. have put forth here predict ranges at
much wider scales? The 50-ha plots have
been excellent for testing predictions be-
cause distributions are completely known.
But at larger scales, the data that I work
with are far sparser—a few tens of plots,
scattered over 1000 km2—and we don’t

know the distributions of trees at these
scales. I would like to draw conclusions,
based on these sparse data, to questions
such as, for example, how many species are
widespread and how many occur in only
one area. Can self-similarity suggest a
way?

Richard Condit
Center for Tropical Forest Science

Smithsonian Tropical Research Institute
Unit 0948

APO AA 34002– 0948, USA
E-mail: condit@ctfs.stri.si.edu
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