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Abstract
Aim: Here we examine the functional profile of regional tree species pools across the 
latitudinal distribution of Neotropical moist forests, and test trait–climate relation-
ships among local communities. We expected opportunistic strategies (acquisitive 
traits, small seeds) to be overrepresented in species pools further from the equator, 
but also in terms of abundance in local communities in currently wetter, warmer and 
more seasonal climates.
Location: Neotropics.
Time period: Recent.
Major taxa studied: Trees.
Methods: We obtained abundance data from 471 plots across nine Neotropical re-
gions, including c. 100,000 trees of 3,417 species, in addition to six functional traits. 
We compared occurrence-based trait distributions among regional species pools, 
and evaluated single trait–climate relationships across local communities using com-
munity abundance-weighted means (CWMs). Multivariate trait–climate relationships 
were assessed by a double-constrained correspondence analysis that tests both how 
CWMs relate to climate and how species distributions, parameterized by niche cen-
troids in climate space, relate to their traits.
Results: Regional species pools were undistinguished in functional terms, but oppor-
tunistic strategies dominated local communities further from the equator, particularly 
in the Northern Hemisphere. Climate explained up to 57% of the variation in CWM 
traits, with increasing prevalence of lower-statured, light-wooded and softer-leaved 
species bearing smaller seeds in more seasonal, wetter and warmer climates. Species 
distributions were significantly but weakly related to functional traits.
Main conclusions: Neotropical moist forest regions share similar sets of functional 
strategies, from which local assembly processes, driven by current climatic condi-
tions, select for species with different functional strategies. We can thus expect 
functional responses to climate change driven by changes in relative abundances of 
species already present regionally. Particularly, equatorial forests holding the most 
conservative traits and large seeds are likely to experience the most severe changes if 
climate change triggers the proliferation of opportunistic tree species.

K E Y W O R D S

climate change, climate seasonality, community assembly, functional composition, functional 
traits, latitude, precipitation, species pool, temperature

1  | INTRODUC TION

Plants have evolved a broad range of functional strategies to cope with 
diverse environmental conditions (Díaz et al., 2016; Pierce et al., 2017). 
The functional assembly of plant communities results from the interplay 

among eco-evolutionary forces operating at different spatio-temporal 
scales (Kraft & Ackerly, 2014). At regional scales, the diverse functional 
strategies found in any given species pool reflect long-term speciation, 
dispersal and extinction filters (Mittelbach & Schemske, 2015). For in-
stance, long-term climatic instability and natural disturbance regimes, 
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such as hurricanes, storms and forest expansion–retraction dynam-
ics due to glacial cycles, may select for functional profiles that favour 
population persistence under unstable conditions, while disturbance-
sensitive species may be rare or even absent from regions under such 
conditions (Balmford, 1996; Betts et al., 2019). At local scales, the func-
tional profile of plant communities depends on the filtering of region-
ally available species across varying current climate regimes (Cadotte 
& Tucker, 2017; Swenson et al., 2012). Assessing changes in functional 
composition of regional species pools and local communities along 
wide (bio)geographic and climatic gradients can help to understand 
potential responses to climate change and other human-caused dis-
turbances (Violle et al., 2014). For instance, global climate change will 
soon bring unprecedented extreme climates to the Neotropics (Mora 
et al., 2013). Therefore, assessing how tree communities are function-
ally structured by trait–climate relationships helps predict the future of 
Neotropical forests in a rapidly changing world.

The advent of global plant trait databases in recent decades has 
enabled numerous investigations of patterns of trait variation and their 
relationships with climatic and biogeographic gradients (e.g. Swenson 
et  al.,  2012). These studies have revealed intriguing patterns, such 
as the tendency of plant species in warmer and less seasonal sites 
(closer to the equator) to be taller and bear larger and softer leaves, 
larger seeds and denser woods (Moles et  al.,  2007, 2009; Swenson 
et al., 2012; Wright et al., 2004, 2017). However, these large-scale trait 
patterns were described mostly from species occurrence data across 
spatial grid-cells or latitudinal bands, and therefore failed to account 
for ecological processes operating at local scales that govern abun-
dance of species and ultimately the functional profile of plant assem-
blages. Moreover, studies that have assessed variation in abundance 
of species and their traits in local communities are based on either a 
single regional flora (e.g. van der Sande et al., 2016) or a single trait 
(e.g. Swenson & Enquist, 2007), and thus are unable to capture spe-
cies assembly processes along wide biogeographic and climatic gra-
dients. Scaling up abundance-based analyses of local communities to 
biogeographic scales can improve our understanding about climatic 
effects on local trait dominance, which ultimately drives ecosystem 
functioning (Poorter et al., 2017). In this way, Bruelheide et al. (2018) 
recently used a large dataset to examine global trait–environment re-
lationships at the local community level (including abundance data), 
and found only weak support (R2 < .1) for trait–climate relationships. 
These global-scale analyses, though insightful, can mask relevant pat-
terns within biotas that share a relatively common (but diverse) biogeo-
graphic history, such as Neotropical moist forests.

Neotropical moist forests extend from southern Mexico to north-
ern Argentina and represent an enormous variation in past and cur-
rent climatic conditions (Blonder et al., 2018; Frierson et al., 2013) and 
biogeographic histories (Burnham & Graham, 1999; Gentry, 1982). 
Overall, these differences clearly result in distinct taxonomic and 
phylogenetic composition more or less packed into biogeographic 
provinces. For instance, tropical moist forests of Meso-America 
(including Mexico) are taxonomically distinct from those in South 
America; the flora of the latter being mostly of Gondwanan origin 
while the northern Neotropics supports many plant lineages with 

Laurasian affinity (Gentry, 1982; Graham, 1999). Also, palynological 
evidence points to a higher frequency of past disturbance events and 
faster recovery of tropical forests in northern Central America com-
pared to South American counterparts (Cole et al., 2014). Mexican 
forests are the northern limit of the Neotropical forest distribu-
tion and experienced repeated expansion–retraction cycles due to 
Pleistocene glaciations (Burnham & Graham, 1999; Graham, 1999), 
compared to South America, where many large blocks of forests 
remained stable during the last glacial and the influence of the 
Andes and the South American dry diagonal corridor is remarkable 
(Colinvaux et al., 2000; Hoorn et al., 2010; Leite et al., 2016).

While assessing relationships between traits and current cli-
mate is straightforward, addressing the effects of biogeographic 
history is challenging. Historical contingencies such as speciation/
extinction dynamics and dispersal events must have affected the 
functional structure of current species pools and different drivers 
might act across localities (Fukami, 2015). Distance from the equa-
tor is related to current climate seasonality but has also been used 
as a proxy of biogeographic history, from plants to mammals, given 
its correlation to past cycles of climate change (Betts et al., 2019; 
Dynesius & Jansson, 2000). It is thus reasonable to expect that 
tropical biotas far from the equator experienced, currently and in 
the past, more shifting climates than their equatorial counterparts 
(Betts et al., 2019; Blonder et al., 2018). Such instability might se-
lect for opportunistic strategies related to fast growth and high dis-
persal ability. For instance, northern forests are mostly composed 
of broad-ranged plant species due to short- and long-term climatic 
instability, while small-ranged species concentrate under stable cli-
mates in Central America, Amazonia and Atlantic forests (Morueta-
Holme et  al.,  2013), which are relatively equatorial regions that 
also support higher phylogenetic endemism (Sandel et al., 2020). In 
contrast, extreme southern Neotropical vegetation has developed 
under relatively low and seasonal temperature and precipitation lev-
els (Oliveira-Filho et al., 2013). The extent to which such historical 
contingencies can induce distinct signatures on the functional com-
position of Neotropical moist forests is yet to be fully understood.

Several key aspects of community functional composition can 
be expressed through the ‘global spectrum of plant form and func-
tion’ (Díaz et al., 2016). Specifically, plants well adapted to resource-
poor/stressful environments with low disturbance regimes tend 
to grow slowly (i.e. low metabolic resource demand) and invest in 
dense, durable tissues (i.e. conservative traits). In contrast, acquis-
itive resource-use traits (e.g. low-density woods, soft leaves) fa-
vour hydraulic efficiency and rapid plant growth, allowing resource 
pre-emption in productive habitats such as those under wetter and 
warmer climates (Reich,  2014; Westoby et  al.,  2002). This oppor-
tunistic strategy can also benefit under more seasonal climates by 
optimizing carbon gain during the growing season in the more open 
forests that allow more light to reach the understorey (Kikuzawa 
et  al.,  2013; Kobe,  1999). Regarding size-related traits, increasing 
leaf area favours light capture, but limits heat exchange with the 
surrounding air, and leads to higher daytime transpirational water 
loss, thereby being favoured in warm, moist and sunny environments 
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(Wright et al., 2017). Also, larger seeds may promote higher seed-
ling performance under low resource availability (Leishman & 
Westoby, 1994; Muller-Landau, 2010), while smaller-seeded species 
have greater seed output that favours dispersal to recently disturbed 
sites and seeds that are more likely to exhibit dormancy, which fa-
vours survival under variable climates (de Casas et al., 2017). Finally, 
larger trees tend to have greater access to light and belowground 
resources, but are more prone to hydraulic failure during drought 
(Brum et  al.,  2019). Combinations of these traits define ecological 
strategies that influence plant responses to environmental condi-
tions (Grime & Pierce, 2012).

Here we test two mutually compatible effects of biogeographic 
history and current climate as structuring drivers of the functional 
organization of tree communities across Neotropical moist forests. 
If historical contingency prevails, then we should expect functional 
dissimilarities among regional tree species pools, which could lead to 
differences in functional composition of local communities occurring 
in similar climates in different regions. If current climate represents 
a prevailing force, functional differences should emerge at the local 
scale due to changes in trait dominance in response to climatic con-
ditions. In particular, we expected that regional species pools should 
be composed of different sets of functional strategies, with higher 
prevalence of species with opportunistic ecological strategies (i.e. 
low-density tissues, small seeds) in regions further from the equa-
tor due to long-term instability that selects for fast growth and high 
dispersal ability. Across local communities, more seasonal, wetter 
and warmer climates should favour dominance of opportunistic 
strategies. We additionally assessed the consistency of trait–climate 
relationships by evaluating to what extent the distribution of spe-
cies, expressed as the abundance-weighted mean climatic conditions 
where they are found (i.e. niche centroids), is mediated by functional 
traits. We discuss our results in terms of how useful they are for the 
understanding of both community assembly patterns and potential 
responses of Neotropical tree floras to climate change and anthro-
pogenic disturbances in human-dominated landscapes.

2  | METHODS

2.1 | Study regions and plots

We studied 471 forest plots from nine biogeographic regions dis-
tributed across the Neotropics, covering the whole latitudinal dis-
tribution of Neotropical moist forests (Figure  1; see Supporting 
Information Table  S1 for details on sampling across regions). All 
plots were located in lowland (up to 800 m a.s.l.), old-growth for-
ests within a variable matrix of land uses. Mean annual precipitation 
ranged from 1,154 to 7,068 mm, and mean annual temperature from 
c. 17 to 28 °C (Supporting Information Figure S1). Temperature sea-
sonality increases with distance from equator (Wright et al., 2009), 
while average temperature and precipitation are typically higher to-
wards the northern Neotropics due to northward heat transport by 
ocean circulation (Frierson et al., 2013; Figure 1).

2.2 | Vegetation data

We used data from 96,290 live adult trees (stems with diameter at breast 
height, DBH ≥ 10 cm; excluding lianas and palms) belonging to 3,417 
species. Tree inventories were carried out by the authors as described 
elsewhere (Arroyo-Rodríguez et al., 2009; Benchimol & Peres, 2015; 
Faria et al., 2009; Hernández-Ruedas et al., 2014; Orihuela et al., 2015; 
Pinho et  al., 2018; Pitman et  al., 2001; Santos et  al., 2008) or com-
piled from the ‘Salvias’ database through the Botanical Information 
and Ecology Network (‘BIEN’) R package (Maitner et al., 2018), which 
includes the Gentry plots (Gentry, 1988). The sampled area and total 
number of individuals and species sampled by region are summarized 
in Supporting Information Table S1. The slight difference in sampling 
methods (e.g. plot sizes) should not affect our results as we focus on 
the relative dominance of functional traits and strategies within com-
munities and the resulting variation across the Neotropics.

2.3 | Functional traits

A comprehensive set of six traits was measured in the field (follow-
ing Pérez-Harguindeguy et al., 2013) and compiled from global data-
bases, such as ‘TRY Plant Trait Database’ (Kattge et al., 2020) and the 
‘Seed Information Database’ (SID; Royal Botanic Gardens Kew, 2020). 
These traits are leaf area (LA; cm2), specific leaf area (SLA; cm2/g), leaf 
dry matter content (LDMC; mg/g), wood density (WD; g/cm3), seed 
mass (SM; mg) and maximum height (Hmax; m). We chose these traits 
because they are known to influence tree performance along climatic 
gradients (Reich, 2014; Westoby et al., 2002), and position species 
along the plant (and organ) economics and size-related traits spectra 
(Díaz et al., 2016; Pierce et al., 2017). For instance, the leaf and stem 
traits considered are expected to reflect a trade-off between rapid 
resource acquisition that enables growth in resource-rich environ-
ments (indicated by high SLA, low LDMC, low WD), and conservation 
of resources in well-protected tissues that ensure survival under low 
resource availability, indicated by the opposite traits (Reich, 2014).

For leaf traits in compound-leaved species, we considered leaf-
lets as the sample unit. Although we recognize the importance 
of intraspecific trait variation in community assembly (Siefert 
et al., 2015), we used species’ mean functional traits as we consider 
this a meaningful approach for the purpose of this study due to the 
extensive species-level trait data and high species turnover among 
regions. Species-level trait data covered on average from 57 to 
80% of total plot abundances across traits/regions (see Supporting 
Information Table  S2 for a summary of trait coverage by region). 
For species with doubtful identification and/or no trait informa-
tion, we first used average trait values at the genus level, then we 
imputed remaining missing values (for which no genus-level data 
were available) through multivariate trait imputation with chained 
equations by predictive mean matching, using the R package ‘mice’ 
(van Buuren & Groothuis-Oudshoorn, 2011). The imputed trait data 
represented 3% or less of individuals in plots for 40 of the 54 region-
trait combinations and over 10% for just one combination (see 
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Supporting Information Table S2 for a summary by region), and the 
distribution of the original and imputed datasets largely overlapped 
(Supporting Information Figure  S2). Genus-level trait means were 
well correlated with species mean traits (Supporting Information 
Table  S3), and their inclusion led to similar distributions of com-
munity abundance-weighted mean (CWM) trait values (Supporting 
Information Figure S3). These findings demonstrate that our results 

are not due to spurious artefacts in the imputation of missing trait 
data. Also, the exclusion of trees with DBH < 10 cm should not rep-
resent a significant bias because adults covered the whole range 
of functional strategies evident among saplings, and abundance-
weighted distributions of species trait values largely overlap when 
considering smaller trees (see example for Northern Meso-America, 
Supporting Information Figure S4).

F I G U R E  1   Location of the 471 forest plots studied in nine biogeographic regions, and variation in the five climatic variables considered 
throughout the Neotropics. MAP = mean annual precipitation (mm); MAT = mean annual temperature (°C); PS = precipitation seasonality 
(coefficient of variation of monthly precipitation values); TS = temperature seasonality (standard deviation of monthly temperature values); 
PET = potential evapotranspiration (mm)
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2.4 | Climate data

For each plot, we assessed the average of five key bioclimatic vari-
ables that are thought to drive trait distributions and vegetation 
patterns (Moles, 2018; Swenson et al., 2012). The five climatic vari-
ables are mean annual precipitation (MAP), mean annual tempera-
ture (MAT), precipitation seasonality (PS; coefficient of variation of 
monthly values), temperature seasonality (TS; standard deviation 
of monthly values, multiplied by 100) and potential evapotranspi-
ration (PET; the amount of water expected to be removed by the 
atmosphere through evapotranspiration processes annually). The 
first four variables were obtained from WorldClim version 2.0 (Fick 
& Hijmans,  2017), which is a high-resolution global geo-database 
(30 arc seconds or c. 1 km at equator) of monthly average data from 
1970 to 2000. The PET was calculated from a set of WorldClim 
variables (taken in the same timeframe as above), using an equa-
tion proposed by the Food and Agriculture Organization of the 
United Nations, which involves minimum, maximum and average 
temperature, solar radiation, wind speed and water vapour pressure 
(Trabucco & Zomer,  2018). Other climatic variables were consid-
ered but then excluded due to collinearity (see below, Supporting 
Information Table S4). The five climatic variables considered were 
weakly inter-correlated (Supporting Information Table S4), but were 
strongly related to latitude (i.e. south–north gradient) or degrees 
from equator (Supporting Information Figure S1). Despite complex 
climate variability due to, for example, ocean circulation and eleva-
tion (Frierson et al., 2013), in this dataset temperature seasonality 
was strongly positively correlated with degrees from equator, while 
other climatic variables (MAP, MAT, PET, PS) increased linearly from 
south to north (Supporting Information Figure S1, see Figure 1 for 
the overall climatic pattern across the Neotropics).

2.5 | Data analyses

We log-transformed LA, SLA and SM values, and square root (sqrt)-
transformed Hmax to reduce skewness in trait distributions. We also 
log-transformed MAP to reduce the influence of two exceptionally wet 
sites. Functional composition of regional species pools was described 
from distributions of the traits of species occurring in each region. 
Functional traits were scaled-up from the species level to the plot level 
by calculating the CWM (i.e. species’ trait values weighted by their 
relative abundances), which reflects the dominance of trait values in 
a community (Muscarella et al., 2017). CWM trait values were calcu-
lated using function ‘functcomp’ from the ‘FD’ R package (Laliberté & 
Legendre, 2010). To examine trait covariation patterns among species 
and communities, we applied principal component analyses (PCAs) to 
the species and CWM trait matrices, using the ‘prcomp’ R function 
(Venables & Ripley, 2002). We also computed CWM of species scores 
on the first two principal component axes, which should reflect eco-
nomics and size trade-offs in functional strategies (Díaz et al., 2016).

To assess changes in community functional composition in re-
sponse to climate or geography, we constructed separate linear 

mixed-effects models for the CWM of each functional trait or strat-
egy (i.e. species scores on the PCA axes, see above). The fixed effects 
were either the five bioclimatic variables described above or the geo-
graphic variables, latitude (to describe south-to-north gradients) and 
degrees from equator (to describe gradients toward higher latitudes 
in both hemispheres). The random effect ‘biogeographic region’ was 
included in all models to account for the nested structure of our 
sampling design, and to assess among-region variation not explained 
by latitude or climate. To avoid multicollinearity between climatic 
or geographic variables, we checked the variance inflation factor of 
each predictor in each model, using the ‘car’ package for R. All values 
were < 3, which allowed us to include all five climate variables or 
the two geographic variables in the models (Neter et al., 1996). After 
running a full model with each set of predictors (i.e. climatic and geo-
graphic variables) for each response variable (i.e. CWM of each trait 
and PCA axes scores) using the maximum likelihood method with 
the R package ‘lme4’ (Bates et al., 2015), we tested all possible com-
binations of predictors and performed a model selection procedure 
to select the best-fit models as those with lowest Akaike information 
criterion values (ΔAICc < 2). Then, we applied model averaging to 
make inferences on how individual climatic variables influence CWM 
of traits and strategies, using the ‘MuMin’ R package (Barton, 2014).

To assess the variance in CWM of traits and strategies (i.e. spe-
cies scores on principal component axes, see above) among regions 
and the strength of their relationships with latitude or climate, we 
partitioned the R2 of each selected model into the total variance 
between regions (‘conditional R2’) and the component explained by 
climate or latitude (‘marginal R2’; Nakagawa & Schielzeth, 2013), re-
porting the variance explained by the model with highest marginal 
R2 for each response variable. The difference between conditional 
and marginal R2 values represents the variance between regions not 
explained by climate/latitude (expressed as fraction of the total vari-
ance). The within-region component is the remaining unexplained 
variance (i.e. 1 – conditional R2). For this, we used the R package 
‘piecewiseSEM’ (Lefcheck, 2016). All the above-mentioned analyses 
were performed in R 4.0.4 (R Core Team, 2021).

To assess composite trait–climate relationships at both species 
and community level, we applied double-constrained correspon-
dence analysis (dc-CA; ter Braak et  al.,  2018). The dc-CA method 
is a new and powerful regression-based approach, similar to the 
covariance-based three-table ordination RLQ method used to as-
sess multivariate trait–environment relationships in what is known 
as the fourth-corner problem (Dray & Legendre,  2008). Like RLQ, 
dc-CA uses three data tables (trait values of species, environmen-
tal conditions of sites, and abundances of species per site) to de-
fine the correlation between traits and environmental conditions 
(i.e. the fourth-corner correlation). The fourth-corner correlation 
has proved to be powerful to test trait–environment relationships 
(Peres-Neto et al., 2017; ter Braak, 2017). dc-CA searches for linear 
combinations of traits and environmental variables that maximize 
their fourth-corner correlation, using weighted least-squares, where 
the weights for species and for sites are their total abundance. In 
contrast, RLQ maximizes covariance not correlation. By maximizing 
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the fourth-corner correlation, dc-CA considers the influence of en-
vironmental conditions on community functional composition (i.e. 
CWM traits) in combination with how species (environmental) niche 
centroids (SNC) relate to their traits (ter Braak et al., 2018). SNCs 
represent the mean climatic conditions where species are found 
(weighted by abundances) and are related to species’ traits to dis-
cover whether trait-mediated mechanisms influence species’ distri-
butions. Specifically, the SNC with respect to environmental variable 
e is a weighted mean, calculated as uj =

∑

n
i= 1

yijei∕
∑

n
i= 1

yij, where yij 
refers to the abundance of the jth species in the ith site, and ei is the 
value of the environmental variable at the ith site.

We additionally applied dc-CA considering geographic gradients 
(latitude, longitude and degrees from equator) instead of climate 
variables as predictors, and performed variation partitioning to de-
fine the separate and shared effects of geographic and climatic gra-
dients. We used the dc-CA based max-test to check significance of 
the dc-CA axes (ter Braak, 2017). The max-test solves the problem of 
inflated type I error rate in the fourth-corner approach (Peres-Neto 
et al., 2017) by applying two independent permutations for testing 
species- (SNC ~ traits) and community-level (CWM ~ climate) pat-
terns, and selecting the highest p-value. We applied the max-test 
after aggregating plots separated by less than 50  km (Supporting 
Information Figure S5) to avoid pseudo-replication caused by nearby 
plots. In the analyses using dc-CA, the issue of the two exceptionally 
wet sites was solved by replacing their MAP values with the value 
4,500 mm/year, slightly higher than the maximum in the dataset; this 
gave a slightly higher fit than the log-transformation, but did not give 
qualitatively different results. We performed the dc-CA using the 
software Canoco 5.12 (ter Braak & Šmilauer, 2018).

3  | RESULTS

3.1 | Functional composition of Neotropical moist 
forest regions

The functional composition of tree species pools largely overlapped 
across regions (Figure  2a), but strong differences among regions 
emerged from abundance-weighted trait values at the local com-
munity level (i.e. CWM) (Figure  2b). Tree communities in forests 
near the equator (e.g. Amazonia, north-eastern Atlantic forest) were 
dominated by taller species with larger seeds, harder woods and 
greater leaf dry matter content. Tree communities in regions fur-
ther from the equator were dominated by lower-statured species 
with smaller seeds and lower LDMC, particularly in the Northern 
Hemisphere (Figure  2b). CWM values of wood density and maxi-
mum height were, however, relatively high in the extreme south (i.e. 
south-eastern Atlantic forests), where specific leaf area achieved the 
lowest values (Figure 2b).

The first two PC axes of species-level trait values captured 55% of 
the variation in the functional space composed by six traits (Figure 3a). 
The first PC axis indicated a common spectrum of variation among 
economic and regenerative traits, varying from species with acquis-
itive traits (i.e. high SLA, low LDMC and WD) and small seeds (i.e. 
opportunistic strategies), to species with more conservative strate-
gies (i.e. low SLA, high LDMC and WD) and larger seeds (Figure 3a, 
Supporting Information Table  S5). The second axis mainly reflects 
variation in leaf area and maximum height, which covaried positively 
(Figure  3a, Supporting Information Table  S5). Variation in SLA was 
mostly captured by a third PC axis (Supporting Information Table S5).

F I G U R E  2   Differences between regions in functional trait values of (a) species present in each regional species pool (unweighted by 
abundance), and (b) the communities (i.e. abundance-weighted means – CWM) in each region, for 3,417 tree species distributed in 471 forest 
plots across nine Neotropical moist forest regions. Boxplots indicate the median (centre line), 25–75% quartiles (box edges), < 1.5 times 
the interquartile range (whiskers), and extreme values (dots). The boxplots are organized from the northernmost (left) to the southernmost 
region (right) along the distribution of the Neotropical moist forest biome. LA = leaf area (cm2); SLA = specific leaf area (cm2/g); LDMC = leaf 
dry matter content (g/g); WD = wood density (g/cm3); SM = seed mass (mg); Hmax = maximum height (m); sqrt = square root

(a) (b)



8  |     PINHO et al.

The first two principal components of community-level trait val-
ues (i.e. CWM) captured more variation (74%) and revealed similar 
trade-offs (Figure 3b), except maximum height was strongly related to 
the first PC axis (Supporting Information Table S5). Tree communities 
from different regions could be distinguished along the first two PC 
axes (Figure 3b). Specifically, the first axis indicated a gradient from 
communities dominated by species with conservative traits (high 
WD and LDMC) in equatorial regions and in the extreme south of the 
Neotropical forest biome, to a more acquisitive (high SLA) community 
composition in northern forests. In turn, the second community trait 
axis distinguished communities in the south-eastern Atlantic region 
and Caribbean Islands as dominated by species with smaller leaves 
compared to more equatorial forests, particularly those across North-
western Amazon and southern Meso-America (Figure 3b).

3.2 | Trait–climate relationships across Neotropical 
tree communities

Current climate explained 16 to 57% of the variation in CWM trait val-
ues across Neotropical moist forests (Table 1a, Figure 4). Temperature 

seasonality presented the strongest relationships with CWM traits, 
except for leaf area, which was more strongly related to mean annual 
precipitation, and SLA, which was not responsive to climate varia-
tion (Table 1a). LDMC, SM, WD and Hmax decreased with increasing 
temperature seasonality, while mean annual temperature had similar 
(but much weaker) effects on the last three of these traits (Table 1a). 
Additionally, increasing annual precipitation was associated with in-
creased dominance of tree species with lower wood density, larger or-
gans and lower leaf dry matter content, while precipitation seasonality 
was negatively related to seed mass (Table 1a). The species functional 
strategies evident on the first two PC axes (Figure 3a) also changed 
predictably in response to climatic variables (Table 1b): PC1 (acquisitive 
to conservative resource economy) was strongly negatively related to 
temperature seasonality, while PC2 (small to large plants and organs) 
increased mainly with mean annual precipitation (Figure 4).

The first two dc-CA axes revealed significant (max-test, 
p = .001) composite trait–climate relationships (Figure 5, Supporting 
Information Table S6). The first axis describes a gradient from envi-
ronments with relatively high seasonality in temperature and pre-
cipitation, combined with high annual precipitation and potential 
evapotranspiration, to less seasonal climates, along which there 

F I G U R E  3   Ordination diagram of the 
first two axes of the principal component 
analysis (PCA) of (a) Neotropical tree 
species trait values (n = 3,417 species); 
and (b) community-weighted mean trait 
values of tree communities (n = 471 plots) 
distributed across nine Neotropical moist 
forest regions. The occurrence probability 
of species in the trait space is illustrated 
in (a) by colour gradients from highest 
(red) to lowest (white) kernel density, 
with contour lines indicating .5, .95 and 
.99 quantiles. LA = leaf area; SLA = 
specific leaf area; LDMC = leaf dry matter 
content; WD = wood density; SM = seed 
mass; Hmax = maximum height

(a)

(b)
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TA B L E  1   Results of averaging of the best-fitted mixed-effects models (ΔAICc< 2) analysing the effects of climatic variables on the 
abundance-weighted community mean of (a) functional traits and (b) functional strategies, across 471 forest plots in nine biogeographic 
regions distributed throughout the Neotropics (see Figure 1)

Model factors β SE

95% CI

p-value
Models R2 (marginal/
conditional)Lower Upper

(a) Functional traits

Log [leaf area (cm2)] .24/.29

Mean annual precipitation (MAP) 0.096 0.017 0.062 0.130 < 2e−16

Potential evapotranspiration (PET) −0.124 0.024 −0.171 −0.076 4.00e−07

Mean annual temperature (MAT) 0.059 0.026 0.008 0.109 .023

Precipitation seasonality (PS) 0.043 0.028 0.015 0.092 .126

Temperature seasonality (TS) 0.024 0.031 −0.016 0.102 .443

Log [specific leaf area (cm2/g)] .09/.32

MAP 0.010 0.007 0.000 0.024 .160

MAT 0.010 0.007 −0.001 0.025 .155

PS 0.010 0.010 0.000 0.030 .284

PET −0.001 0.005 −0.029 0.011 .795

TS −0.003 0.007 −0.030 0.009 .695

Leaf dry matter content (g/g) .47/.70

TS −0.025 0.003 −0.031 −0.020 < 2e−16

MAP −0.003 0.002 −0.006 0.000 .026

MAT −0.003 0.003 −0.008 0.000 .224

PET −0.002 0.003 −0.010 0.003 .576

PS 0.0001 0.001 −0.005 0.004 .894

Log [seed mass (mg) + 1] .57/.68

TS −0.653 0.067 −0.783 −0.522 < 2e−16

MAT −0.161 0.056 −0.270 −0.051 .003

PS −0.107 0.047 −0.188 −0.016 .022

PET −0.032 0.058 −0.220 0.035 .577

MAP −0.003 0.017 −0.088 0.062 .869

Wood density (g/cm3) .39/.62

TS −0.052 0.006 −0.064 −0.040 < 2e−16

MAP −0.018 0.003 −0.024 −0.011 3.00e−07

MAT −0.016 0.005 −0.026 −0.005 .003

PET 0.009 0.007 0.000 0.024 .207

PS −0.003 0.005 −0.016 0.001 .523

Square root (sqrt) [maximum height (m)] .16/.41

TS −0.190 0.034 −0.256 −0.125 < 2e−16

MAT −0.173 0.033 −0.239 −0.108 2.00e−07

PET 0.057 0.045 0.005 0.145 .204

PS −0.004 0.014 −0.065 0.030 .767

(b) Functional strategies

Principal component 1 (PC1; economics 
spectrum)

.40/.69

MAP −0.096 0.032 0.034 0.158 .002

MAT −0.159 0.043 0.075 0.243 .0002

TS −0.560 0.057 0.448 0.673 < 2e−16

(Continues)
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was a shift in dominance from shorter plants with relatively ac-
quisitive traits and small seeds, to slow-growing species with con-
servative traits and large seeds (Figure 5a). This first axis separated 

communities across northern regions from those in more equatorial 
regions (Figure  5b). The second dc-CA axis was mostly explained 
by variation in MAP and PET, reflecting a gradient from drier sites 

Model factors β SE

95% CI

p-value
Models R2 (marginal/
conditional)Lower Upper

PS −0.017 0.035 −0.033 0.140 .634

PET 0.013 0.037 −0.174 0.068 .739

PC2 (size spectrum) .28/.28

MAP 0.120 0.013 −0.145 −0.094 < 2e−16

PET −0.125 0.017 0.092 0.158 < 2e−16

PS 0.060 0.015 −0.090 −0.031 7.15e−05

TS −0.024 0.021 0.001 0.068 .255

MAT 0.022 0.023 −0.073 0.002 .325

Note: For each variable retained in a best-fit model, we indicate the mean coefficient (β), the standard error (SE), the 95% confidence intervals (95% 
CI) and the p-value. p-values of significant variables (according to 95% CI) are in bold. The predictors were standardized and thus the coefficients 
indicate their relative contribution for each response variable. The marginal R2 (variance explained by climatic factors) and conditional R2 (the former 
plus additional among-regions variance not explained by climatic factors) values of the full model are also shown. Units of climatic variables: MAP 
(mm), PET (mm), MAT (°C), PS (coefficient of variation of monthly values), TS (standard deviation of monthly values multiplied by 100).
ΔAICc refers to differences (delta) in corrected Akaike information criterion.

TA B L E  1   (Continued)

F I G U R E  4   Significant relationships between climatic variables and community abundance-weighted mean (CWM) of functional traits 
and strategies [i.e. species scores on the two first axes of the principal component analysis (PCA) on functional traits, see Figure 3a], for 
471 tree communities distributed across nine Neotropical moist forest regions (see Table 1 for details on the best models). LA = leaf area; 
LDMC = leaf dry matter content; WD = wood density; SM = seed mass; Hmax = maximum height; MAP = mean annual precipitation; TS = 
temperature seasonality; SD = standard deviation; sqrt = square root. The relationship with highest slope (i.e. estimate) is shown for each 
trait/strategy, except for LA and PC2, for which we selected the relationship with the lowest error and p-value from two relationships with 
similar slopes
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under high potential evapotranspiration to exceptionally wet sites 
(Figure  5a). This second gradient explained the variation in domi-
nance from small-leaved species with high woody density across 
south-eastern Atlantic forests and Caribbean Islands, to large-
leaved, soft-wooded species in communities across northern re-
gions, particularly the Chocó bioregion and north-western Amazon 
(Figure 5b).

Climate variables were good predictors of taxonomic compo-
sition across communities (CCA eigenvalues of .8 and .7 for the 
first two axes), as well as of multivariate gradients in community 
abundance-weighted traits (46% of variance explained; Supporting 
Information Table  S6). In turn, traits were weak predictors of the 
distribution of individual species abundances across communities, 
explaining only 4% of variation in species climate niche centroids 

(Supporting Information Table  S6). Forward selection on climate 
variables revealed that three of the five climate variables (MAP, TS 
and PET) account for most variation in composite trait–climate gra-
dients (Supporting Information Figure S6).

3.3 | Geographic gradients in community functional 
composition

All community-weighted mean traits were significantly related to 
either latitude or degrees from equator. LA, LDMC, WD and SM de-
creased with increasing degrees from equator, while SLA increased 
and Hmax decreased with latitude (i.e. from southern to northern for-
ests; Supporting Information Figure S7). Latitude was more strongly 

F I G U R E  5   Ordination diagrams from double-constrained correspondence analysis (dc-CA) for 3,417 species across 471 Neotropical 
moist forest plots, showing (a) biplot of canonical weights of climate variables and scaled correlations of traits summarizing the coefficients 
of the multiple regressions of all community abundance-weighted means (CWMs) of traits on the climate predictors; and (b) position 
(constrained scores) of samples (plots) in the dc-CA biplot. Graphs (a) and (b) form a biplot of the CWMs of all plots and traits. The 
significance of dc-CA results was tested by aggregating community data by spatial clusters of plots (n = 59; see Supporting Information 
Figure S5) to avoid pseudo-replication (see Table 2 for related statistics). The position of the 30 species that contribute most to the first 
two dc-CA axes is shown in Supporting Information Figure S8. LA = leaf area; SLA = specific leaf area; LDMC = leaf dry matter content; 
WD = wood density; SM = seed mass; Hmax = maximum height; MAP = mean annual precipitation; MAT = mean annual temperature; 
TS = temperature seasonality; PS = precipitation seasonality; PET = potential evapotranspiration

(a)

(b)
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related to vegetation patterns (i.e. taxonomic turnover across com-
munities), while degrees from equator explained relatively more of 
the functional variation (Supporting Information Table S7). Variance 
partitioning revealed unique and shared effects of geography and 
climate, combining to explain 66% of the variation in CWM trait val-
ues (Table 2). Most of this explained variation (39%) resulted from 
shared effects of geographic gradients and climate variables, though 
there were also unique effects of similar size from both climate (15%) 
and geography (12%) (Table 2).

4  | DISCUSSION

Species pools of Neotropical moist forest regions from southern 
Mexico to southern Brazil possess similar distributions of trait val-
ues. Long-term filters that can control for the functional composi-
tion of regional species pools thus have little to no importance. In 
contrast, local tree communities are functionally structured along 
climatic and (bio)geographic gradients. Species assembly processes 
that govern local abundance of species in tree communities must 
have generated the documented functional dissimilarities. The nov-
elty of our findings is that we found clear though complex trait–
climate relationships across Neotropical moist forests, that are not 
simply driven by geography. The observed patterns suggest an in-
crease in relative abundance of lower-statured, light-wooded and 
softer-leaved species bearing smaller seeds (i.e. opportunistic strat-
egies) under more seasonal climates in communities further away 
from the equator, especially under wetter and warmer conditions 
across northern forests. In contrast, communities in more stable cli-
mates (mostly close to the equator) are dominated by species with 
large seeds and conservative traits (i.e. the typical functional profile 
of late-successional tree species). Trait–climate relationships at the 
species level (i.e. species niche centroids ~ traits) were also signifi-
cant but weaker, suggesting either that changes in the abundance of 
dominant species are responsible for varying functional signatures 
across Neotropical forests, or that there is scope for improvement 
of the trait set. It is important to recognize that dominance of func-
tional strategies differs between regions mainly due to local assem-
bly processes related to climate rather than changes in species pools 

that would be the result of biogeographic history. This helps to un-
derstand how Neotropical forests may respond to climate change 
and other human-imposed disturbances.

Our results contrast with those of Bruelheide et  al.  (2018), in 
which functional composition of plant communities (abundance-
based) was weakly related to climate at the global scale. At the 
continental/biome scale (i.e. within Neotropics), we found strong 
trait–climate relationships across Neotropical moist forest tree 
communities, with combinations of climatic variables explaining up 
to 57% of variance in CWM trait values. Changes in trait dominance 
were mainly driven by the increase in temperature seasonality with 
distance from the equator and, to a lesser extent, by changes in pre-
cipitation regimes, average temperature and potential evapotrans-
piration (Table 1) that are less clear in geographic terms (Figure 1). 
Slightly different from our findings, previous assessments of global 
trait distributions suggest that higher mean annual temperature 
and/or precipitation in equatorial regions leads to increased prev-
alence of conservative traits and larger seeds (e.g. Bruelheide 
et al., 2018; Moles et al., 2014; Swenson et al., 2012). This discrep-
ancy may arise because global patterns of trait distribution may re-
flect major differences among predominant biomes across climatic 
zones. Also, global-scale studies usually include both woody and 
herbaceous species (e.g. Bruelheide et  al.,  2018), which respond 
differently to climate across the Neotropics (Šímová et al., 2018). 
Most importantly, global-scale studies include dry forests, where 
the combination of high temperatures with low and highly seasonal 
precipitation may represent a physical stress, favouring conser-
vative strategies (Westoby et  al.,  2002). As our study focuses on 
Neotropical moist forests, higher temperatures and precipitation 
should actually favour acquisitive traits of trees, as we found, due 
for example to increased hydraulic efficiency (Santiago et al., 2018; 
Zhang et al., 2013). Our findings strengthen the notion that climatic 
conditions play a key role in trait filtering across Neotropical tree 
assemblages.

Despite differences in magnitude of climate effects, the di-
rection of community-level trait–climate relationships (i.e. includ-
ing abundance data) in the Neotropics generally agrees with that 
of species-level global trait–climate relationships (e.g. Swenson 
et  al.,  2012; Wright et  al.,  2017, see Moles,  2018 for a review of 

Component
Variation 
(adj. R2)

% of 
explained df

Mean 
square F p

Climate (unique) .15 22.7 5 0.03 5.9 .0005

Geography (unique) .12 17.8 3 0.04 7.2 .0045

Shared .39 59.5 – – –

Total explained .66 100 8 0.09 15.3 .0005

Note: The trait-structured variation is a weighted variance of the community abundance-weighted 
means (CWMs) with respect to orthonormalized traits with the sample total as weight.

TA B L E  2   Variation partitioning of the 
trait-structured variation in the double-
constrained correspondence analysis 
(dc-CA) with all traits, showing the unique 
and shared effects of geography (latitude, 
longitude, and degrees from equator) 
and climate [mean annual precipitation 
(MAP), mean annual temperature 
(MAT), temperature seasonality (TS), 
precipitation seasonality (PS), potential 
evapotranspiration (PET)] in aggregated 
samples of tree communities across 
Neotropical moist forests (n = 59; see 
Supporting Information Figure S5)
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these relationships). For example, we found that seed mass tends 
to be lower in plants growing at more seasonal sites further from 
the equator, as observed elsewhere (Malhado et  al.,  2015; Moles 
et al., 2007; Swenson et al., 2012), presumably because larger seeds 
require longer growing seasons for development and are less likely 
to exhibit dormancy, which helps seeds to survive under adverse 
seasonal conditions (de Casas et al., 2017; Thompson et al., 1993). 
Moreover, tree species in wetter sites tend to present larger leaves 
and softer wood and leaf tissues, as we found, because these traits 
maximize resource capture in productive environments (Westoby 
et  al.,  2002; Wright et  al.,  2017). Conversely, small leaves with 
low SLA characterize cold tolerance (Poorter et  al.,  2009; Wright 
et al., 2017) as we observed in the south-eastern Atlantic forests, 
a region that experiences relatively low and seasonal temperatures 
(Supporting Information Figure S1; Oliveira-Filho et al., 2013). Also in 
agreement with our findings, plant height tends to be limited under 
more seasonal climates (Moles et al., 2009; Swenson et al., 2012), 
and non-significant relationships between SLA and climatic gradi-
ents are more a rule than an exception (Moles, 2018). Finally, large 
seeds and conservative traits may provide advantages for species in 
shaded conditions of relatively closed-canopy forests near the equa-
tor (Kitajima & Poorter, 2010; Leishman & Westoby, 1994).

While the trait–climate relationships we observed are well 
supported by theory, they might to some extent be driven by (bio)
geography, as some climatic variables were strongly correlated to 
either latitude or distance from equator. For instance, tempera-
ture seasonality increases sharply with distance to equator (R2 = 
.81), which similarly explains community functional composition 
(cf. Figure  4 and Supporting Information Figure S7). We can thus 
only speculate about the relative importance of climatic and geo-
graphic gradients, as they share the largest fraction of explained 
variance in CWM traits. However, we note that both climate and 
geography have also unique effects on community functional com-
position (Table 2). To illustrate this, the southern Brazilian Atlantic 
Forest does not fully follow the trend of increasing dominance of 
opportunistic strategies with distance from equator, as it supports 
many large, hard-wooded trees. This can, however, be explained by 
combinations of climatic factors, given the seasonal but relatively 
cold and dry climates in the southern (compared to the northern) 
extreme of the Neotropics (Figure S1), which select for conserva-
tive strategies. In fact, most species in this southernmost region 
have tropical-subtropical ranges due to forest expansion over sub-
tropical grasslands during the Last Glacial Maximum (Costa et al., 
2018; Oliveira-Filho et  al.,  2013). Also, the dominance of species 
with small leaves and conservative traits under wet and warm cli-
mates in the Caribbean region deviates from the trait–climate re-
lationships, but may reflect selection by hurricane-force winds for 
stronger structural support (Lugo, 2000).

There is a consensus that climate change will make tropical for-
ests warmer, with more seasonal rainfall and temperature including 
more frequent droughts, more heavy rains and frequent heatwaves 
(IPCC, 2014). These are conditions currently found across north-
ern Neotropical moist forest regions, where opportunistic 

strategies thrive. Therefore, it is reasonable to expect forests in 
northern Neotropical regions to be more resilient to predicted cli-
mate changes, unless climate change leads to drastic changes to-
wards alternative ecosystem states, like dry forest or woodlands. In 
contrast, climate changes should lead southern and especially equa-
torial forests of the future to more closely resemble today’s north-
ern Neotropical moist forests due to proliferation of opportunistic 
strategies already present in regional species pools (Figure 2a). This 
may disrupt ecosystem services such as carbon sequestration and 
storage if forests once dominated by conservative traits experi-
ence the proliferation of more opportunistic strategies (Poorter 
et al., 2017), including soft-wooded species that grow fast but die 
young (Brienen et al., 2020).

In summary, tree communities across Neotropical moist for-
ests are functionally distinct because particular traits are favoured 
under particular climates. Such functional predictability permits 
insights into tropical forest responses to global changes and the 
consequences for biodiversity persistence, provision of ecosystem 
services and global sustainability (Díaz et al., 2007). In fact, as eco-
system functioning is determined by the dominant traits in tropical 
forests (Poorter et al., 2017), our findings can help to anticipate the 
impact of future climate change and/or human-induced disturbances 
(e.g. habitat loss, fragmentation) on the functioning of Neotropical 
forests. For instance, we must expect an increase in prevalence of 
low-statured tree species with relatively acquisitive traits and small 
seeds, based on scenarios of increasing climate seasonality (IPCC, 
2014). This functional strategy is associated with faster growth and 
reproductive rates (Moles, 2018; Reich, 2014) and thrives in human-
modified tropical landscapes worldwide (Laurance et  al.,  2006; 
Santos et  al.,  2008), but plays a limited role in crucial ecosystem 
services such as carbon and nutrient retention (Poorter et al., 2017). 
Overall, this changing functional structure of Neotropical moist 
forests is likely to confer varying degrees of resilience to human-
caused disturbances. Neotropical moist forests vary widely in func-
tional terms and one should be aware of these differences when it 
comes to understanding the functional assembly of Neotropical tree 
communities.
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