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TROPICAL FORESTS

Demographic trade-offs predict tropical
forest dynamics
Nadja Rüger1,2,3*, Richard Condit4,5, Daisy H. Dent3,6, Saara J. DeWalt7, Stephen P. Hubbell3,8,
Jeremy W. Lichstein9, Omar R. Lopez3,10, Christian Wirth1,11,12, Caroline E. Farrior13

Understanding tropical forest dynamics and planning for their sustainable management require
efficient, yet accurate, predictions of the joint dynamics of hundreds of tree species. With increasing
information on tropical tree life histories, our predictive understanding is no longer limited by species
data but by the ability of existing models to make use of it. Using a demographic forest model, we
show that the basal area and compositional changes during forest succession in a neotropical forest can
be accurately predicted by representing tropical tree diversity (hundreds of species) with only five
functional groups spanning two essential trade-offs—the growth-survival and stature-recruitment
trade-offs. This data-driven modeling framework substantially improves our ability to predict
consequences of anthropogenic impacts on tropical forests.

T
ropical forests are highly dynamic. Only
about 50% of the world’s tropical forests
are undisturbed old-growth forests (1).
The remaining half comprises forests
regenerating after previous land use, tim-

ber or fuelwood extraction, or natural distur-
bances. Even unmanaged old-growth forests
are a dynamic mosaic of patches recovering
from single or multiple treefall gaps (2). Thus,
understanding how forest structure and com-
position of the diverse tree flora change during
recovery from disturbance is fundamental to
predicting carbon dynamics, as well as to plan-
ning sustainable forest management (3). De-
spite the importance of regenerating tropical
forests for the global carbon cycle and timber
industry, our mechanistic understanding and
ability to forecast compositional changes of
these forests remain severely limited (4).
Conceptually, tropical forest succession has

been viewedmostly through a one-dimensional
lens distinguishing species along a fast-slow
life-history continuum, or growth-survival trade-
off (4–6). “Fast” species are light-demanding
and grow quickly, but survive poorly, and dom-
inate early successional stages, whereas “slow”
species are shade-tolerant and grow slowly,
but survive well, and reach dominance in later
successional stages. However, several studies
suggest that tropical tree communities are also
structured along a second major trade-off axis
that is orthogonal to the growth-survival trade-
off: the stature-recruitment trade-off (7, 8).
The stature-recruitment trade-off distinguishes

long-lived pioneers (LLPs) from short-lived
breeders (SLBs). LLPs grow fast and live long,
and hence attain a large stature, but exhibit
low recruitment. SLBs grow and survive poor-
ly, and hence remain short-statured, but pro-
duce large numbers of offspring (8). However,
we are lacking a systematic assessment of
how important these trade-offs are for tropical
forest dynamics.
To evaluate the importance of the growth-

survival and stature-recruitment trade-offs for
tropical forest dynamics, we parameterized the
perfect plasticity approximation (PPA) model
(9, 10) with demographic trade-offs derived from
forest inventory data. The PPAmodel simulates
the dynamics of a potentially large number of

species based on a small set of demographic
rates (growth, survival, and recruitment) and
accounts for height-structured competition for
light by distinguishing up to four canopy layers
(11). Canopy gaps are filled by the tallest trees
from lower canopy layers, without regard for
their horizontal position [perfect plasticity as-
sumption (9)].
Our study site is the tropical moist forest at

Barro Colorado Island (BCI), Panama, where
recruitment, growth, and survival of individ-
ual trees have been monitored in a 50-ha plot
for more than 30 years (2, 11, 12). To account
for the dependence of these demographic
rates on light availability, we assigned all mon-
itored individuals of 282 tree and shrub spe-
cies to one of four canopy layers on the basis
of their size and the size of their neighbors
(11, 13) and estimated model parameters (an-
nual diameter growth and survival rates) for
each species in each canopy layer (8). Addi-
tionally, we calculated species recruitment
rates per unit of basal area. A dimension re-
duction of model parameters [weighted prin-
cipal components analysis (PCA) (14)] reveals
the two demographic trade-offs, that is, the
growth-survival trade-off and the stature-
recruitment trade-off, which together explain
65% of demographic variation among the 282
species (Fig. 1).
Our goal here is to explore whether this

low-dimensional demographic trade-off space
can capture tropical forest dynamics, and if so,
how much demographic diversity is necessary
to accurately predict changes in basal area (a
proxy for carbon storage in aboveground bio-
mass) over time. We used species’ positions in
the trade-off space to estimate model param-
eters for all 282 species (11), thus smoothing
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Fig. 1. Demographic trade-offs for
282 tree species at BCI, Panama.
Arrows show loadings of a weighted
PCA on annual diameter growth and
survival rates of individuals ≥1 cm in
diameter in four canopy layers
(where Growth1 indicates growth in
full sun and Growth4 indicates growth
of individuals that are shaded by
three canopy layers) and the number
of sapling recruits per unit of basal
area. Colored dots are locations in
demographic space of plant functional
types (PFTs) that were used in
model scenarios 1 and 3.
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across observed relationships between demo-
graphic rates. We simulated forest dynamics
under four scenarios that differed in the num-
ber of trade-offs (one versus two) and level of
demographic diversity [number of simulated
species or plant functional types (PFTs); Table
1 and Fig. 2A]. We tested model performance
for the 50-ha old-growth plot at BCI (also used
to derive demographic rates) and for a chrono-
sequence of nearby secondary forests that
share a similar topography and soil and a
majority of tree species (15).
To compare the observed dynamics of the

50-ha old-growth plot in BCI with model pre-
dictions, we initialized the model with in-
ventory data from 1985 and simulated forest
dynamics until 2010. When only the growth-
survival trade-off was included, basal area
was predicted to decline because of a decline
in the number of trees >20 cm in diameter,

especially of fast species (Fig. 2B and fig. S1).
Including the stature-recruitment trade-off
improved the match between predicted and
observed basal area and aboveground biomass
(AGB; Fig. 2B and figs. S2 and S3) for different
PFTs and size classes (figs. S4 and S5). How-
ever, when all species were simulated individ-
ually (scenario 4), the number of large trees
(>60 cm in diameter) and basal area were in-
correctly predicted to increase (fig. S1). This
was attributable to the greater influence of
measurement errors due to small sample sizes
when parameterizing the model for 282 spe-
cies (11), although most species-level predic-
tionswere reliable (fig. S6).Maximumdiameters
were accurately predicted by all scenarios, ex-
cept for scenario 2, where observed maximum
diameters >150 cm were not reproduced (fig.
S7). This test shows that the model scenarios
that included both trade-offs were able to re-

produce the structure and stability of the
forest over the time span that was used to de-
rive demographic rates.
Next, we tested the ability of the model to

predict successional changes in secondary for-
ests. We used the same model parameteriza-
tion scenarios, initialized the model with data
from 40-year-old secondary forest, and com-
pared predictions of forest dynamics with ob-
servations from a chronosequence of 60-, 90-,
and 120-year-old secondary forests (two 1-ha
plots in each age class). As in old-growth forest,
predictions of secondary succession were most
accurate when forest diversity was represented
by five PFTs spanning both demographic trade-
offs. When only the growth-survival trade-off
was included, the increase of basal area (Fig.
2C) and AGB (fig. S2) during succession was
underestimated because the number of large
trees (>60 cm in diameter) was underestimated
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Fig. 2. Predicted and observed basal area in four model scenarios. Model
scenarios are shown in Table 1. (A) Locations of species (colored dots) and
representative PFTs used for model scenarios (black dots) in demographic
space; each species was assigned to a PFT on the basis of proximity in
demographic space and color coded as in Fig. 1. (B and C) Predicted (lines)

and observed (asterisks) basal area by PFT in old-growth tropical forest (BCI;
black is total basal area) (B) and secondary tropical forest in the Barro Colorado
Nature Monument (C). RSME is the root mean square error of prediction of
total basal area, and MASE is the mean absolute scaled error of PFT-level
predictions (11). Lines and asterisks are color coded as in Fig. 1.
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(fig. S8). By contrast, when both trade-offs were
included, observed successional changes in
basal area, AGB, and abundance for different
PFTs and size classes were accurately repro-
duced (Fig. 2C and figs. S2 and S8 to S10).
However, when all species were simulated
individually (scenario 4), the number of large
trees (>60 cm in diameter) and basal area of
fast species and LLPswere overestimated. The
observed peak in basal area in the 90-year-old
secondary forest is likely caused by remnant
trees in the study plots and disappears when
larger spatial scales are considered (16). The
diameter distribution after 400 years of simu-
lation closely matched the observed diameter
distribution onlywhenboth demographic trade-
offs were included (Fig. 3A).
In addition to the above simulations, we also

ran simulations with alternative initial condi-
tions to explore the robustness of our results.
The alternative initial conditions [bare ground
and20-year-old forest; (11)] didnot qualitatively
affect our results. For all initial conditions, the
five-PFT scenario spanning both demographic
trade-offs yielded predictions that best matched
observations (fig. S11). Together, the old-growth
and secondary forest simulations suggest a close
match between the five-PFT scenario and the
available data. However, even with this multi-
decadal dataset, we have only a limited capacity
to rigorously test a forest dynamics model.

For example, we used chronosequence data to
represent the first 120 years of secondary suc-
cession because no time series of direct observa-
tions of succession exists for such a long period.
To assess whether the forest in the 50-ha plot

at BCI is at equilibrium with the local distur-
bance regime, we simulated forest succession
(starting from 40 years as above) under sce-
nario 3 for 1000 years without any external
disturbances. Here, the slow and LLP PFTs
codominated the forest after 400 to 500 years
(fig. S12). The fast PFT died out because the
canopy gaps that it requires for persistence
(17) are treated inourmodel in a simplistic (non–
spatially explicit) manner. In reality, however,
the forest is composed of a mosaic of patches of
different successional age since the last distur-
bance event (18). Thus, we compared the sim-
ulated successional trajectories of the fast and
slow PFTs with observed species composition
at the 0.1-ha scale to infer the patch-scale age
distribution [fig. S13; (11)]. This model-inferred
age distribution suggests that themajority of
the 0.1-ha patches within the BCI 50-ha plot
are between 50 and 250 years old. This is con-
sistent with light detection and ranging (LIDAR)
data collected on BCI, which suggest that be-
tween 0.43 and 1.6% of the area is disturbed
every year, corresponding to an average dis-
turbance interval between 63 and 233 years
(11, 19).Whenwe use the estimated proportion

of 0.1-ha patches in each age class to generate
the PFT composition at equilibrium with the
disturbance regime, predictions closelymatch
observations (Fig. 3B).
These results suggest that the forest in the

50-ha plot at BCI is at equilibrium with the
local disturbance regime. This helps to re-
solve a long-standing dispute of whether LLPs
are a transient feature of successional forests
(5, 20, 21) and shows that, in this forest, they
are not transient but an integral and domi-
nant component of the old-growth forest. In-
deed, LLPs dominate most successional stages
and contribute more AGB than any other
demographic group, except in very young for-
ests (<40 years) or patches that have remained
undisturbed for a long time (>400 years, fig.
S12). They can maintain populations in the
absence of large-scale disturbances and com-
pensate for their low recruitment by growing
quickly up to the canopy or emergent layer,
where they may persist as a seed source for
several centuries (8).
Overall, our results suggest that two demo-

graphic trade-offs are needed to accurately
predict successional patterns in tropical forest
structure and composition. Considering only
the fast-slow continuum of life histories is not
sufficient because it ignores LLPs, one of the
most important (in terms of tree size and
AGB) components in many tropical forests.
Although the existence of LLPs has long been
recognized (4), they have often been assumed
to be part of the fast-slow continuum—that is,
considered to be midsuccessional—because
they reach their highest basal area in inter-
mediate stages of succession (5). However,
LLPs lie on a second demographic dimension
(8, 22), and this second dimension is essential
to understanding tropical forest dynamics.
Our results also suggest that a small number

of demographic niches is sufficient to capture
the dynamics of the BCI forest. Specifically,
just five PFTs were sufficient to adequately
capture successional patterns of forest compo-
sition and carbon dynamics (Figs. 2 and 3). To
explore the robustness of the five-PFT ap-
proach under future climate, we used rela-
tionships between climate, functional traits,
and demographic rates to implement our
model simulations under alternative future
climate scenarios (11). As under current con-
ditions, the five-PFT and species-level mod-
els yielded similar predictions to each other
under future climate scenarios (fig. S14), sug-
gesting that a limited number of PFTs may be
sufficient to capture the community response
to climate change. This conclusion warrants
further investigation with models that include
physiological mechanisms not included in our
model, as well as additional functional axes
(e.g., drought tolerance) that are likely to be
relevant at broader spatial or temporal scales.
Nevertheless, our results suggest that functional
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Fig. 3. Model validation. (A) Diameter distribution in 400-year-old simulated forest for the four model
scenarios shown in Table 1. N stems, number of stems. (B) Predicted and observed basal area in model
scenario 3. Observed basal area is from an old-growth tropical forest in BCI, Panama. Predicted basal area is
based on the estimated number of 0.1-ha patches in each age class [fig. S13; (11)].

Table 1. Model scenarios. Model scenarios differ in the number of included trade-offs and the level
of demographic diversity.

Scenario Trade-offs Demographic diversity

1 Growth-survival Three PFTs (fast, intermediate, slow)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

2 Growth-survival 282 species
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

3 Growth-survival, stature-recruitment Five PFTs (fast, slow, LLP, SLB, intermediate)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

4 Growth-survival, stature-recruitment 282 species
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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diversity in species-rich tropical forestsmay be
much smaller than taxonomic diversity and
that tropical forest diversity could be accu-
rately represented in Earth systemmodels by a
small number of PFTs that span the relevant
functional axes (23).
Beyond suggesting a simple yet accurate

means to represent tropical forest functional
diversity with a limited number of PFTs, our
study also demonstrates the feasibility of em-
bracing species-level diversity. Together, the
demographic forest model and the empirical
demographic trade-offs define an objective
and reproducible workflow that also delivers
stable predictions of forest dynamics when
run at the species level. Such workflows, along
with the increasing availability of tropical for-
est inventory data, offer the opportunity to
develop truly species-based models to support
the evidence-based planning of forest restora-
tion and sustainable tropical forest manage-
ment by predicting rates and trajectories of
forest regrowth at both the species and com-
munity levels (3).
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Materials and Methods 

 

The PPA model 

We used a deterministic version of the PPA model that is based on Purves et al. (10), where tree 

crowns are assumed to be flat. The simulation area was 1 ha and the model time step was 5 

years. The model works on cohorts of trees that share the same age, diameter at breast height 

(dbh, in cm) and species/plant functional type (PFT). The number of trees in a cohort can be 

fractions of individuals, including numbers <1. Cohorts are removed from the simulation when 

they have <0.001 individuals. We extended the model from two to four canopy layers (13) and 

species/PFTs are characterized by growth and mortality rates in each of the four layers. We 

modified several aspects of the model. Cohorts are removed if they are assigned to a layer >4. 

Sapling cohorts enter the model at 1 cm dbh (originally 0.01 cm). Recruitment rates are constant 

(see below, originally they scaled with a species’ crown area in the canopy layer). Sapling 

cohorts recruit to layer 4. The dbh (cm)-crown radius (m) relationship is nonlinear (originally 

linear),  

crown radius = 0.5*dbh0.62. 

Likewise, the dbh (cm)-height (m) relationship is non-linear, 

height = 11*(dbh/10)0.5, 

and parameters for both allometries were determined using data from BCI (26). As a single 

allometry for all trees worked equally well as species-specific allometries in determining 

structural and dynamic properties of the forest (13), we used a single allometry for crown radius 

and height. 

To calculate aboveground biomass (AGB, Mg), we followed ForestGEO protocols and used 

allometric equations based only on dbh and wood density (wd), but not height, from Chave et al. 

(27) for moist tropical forest: 

AGB = (wd*exp(−1.499+2.148*log(dbh)+0.207*log(dbh)²−0.0281*log(dbh)³)/1000), 

where dbh is measured in cm and wd in g/cm³. 

 

Parameterization 

In a previous study, we performed a weighted PCA (14) on nine demographic parameters for 282 

species from the BCI 50-ha plot, namely growth rate in the four canopy layers, survival 

(expressed as lifespan) in the four canopy layers, and the number of recruits per unit of adult 

basal area, which were derived from forest inventory data (8, 24). We follow the taxonomy as of 

2017 (28). The first two principal components of this PCA correspond to a growth-survival 

trade-off (37% explained variation) and a stature-recruitment trade-off (28% explained 

variation), respectively. Here we used a slightly modified version of the PCA using the number 

of recruits per unit of total species’ basal area, and used the first two principal components 

(henceforth ‘axes’ or ‘trade-offs’) to determine model parameters. An exception are recruitment 

rates, which we determined directly from forest inventory data (independent of the basal area of 

a species and independent from the PCA). We assumed recruitment rates to be constant over 

time because the 50-ha plot is embedded within a larger forest area from which seeds 

continuously arrive into the study area. Moreover, relationships between recruitment rates per 

PFT and total basal area in 31.25 x 31.25 m² subplots or basal area of the respective PFT were 

weak or absent (not shown). 

To determine growth and mortality rates, we specified coordinates of five PFTs 

symmetrically in the two-dimensional demographic space (Fig. 1 in main manuscript): 

2



 

 

- Fast (location x1=−1.5, x2=0) 

- Slow (location x1=1.5, x2=0) 

- Long-lived pioneer (LLP, location x1=0, x2=1.5) 

- Short-lived breeder (SLB, location x1=0, x2=−1.5) 

- Intermediate (location x1=0, x2=0). 

Coordinates of +/−1.5 on the two trade-off axes correspond to between 9 and 19% of species 

having more extreme demographic strategies.  

For the simulations including all species, we used their PCA scores along the 1st or 1st and 

2nd PCA trade-off axis, depending on the scenario (Data S1).  

We then solved the linear system of equations consisting of the PCA loadings of the nine 

parameters (Table S1) and species’ scores (setting all species’ scores on axes 3 to 9 to 0, i.e. 

x3…x9 = 0) to obtain transformed input parameters to the PCA (Data S1). These were then back-

transformed to model parameters by de-centering, de-scaling, and de-logging. Lifespan was 

transformed into mortality, i.e. mortality = 1/lifespan (Tables S2 and S3). 

From these strategies, we simulated four scenarios, differing in the number of species/PFTs: 

1. 1 trade-off, 3 PFTs (fast, intermediate, slow) 

2. 1 trade-off, 282 species 

3. 2 trade-offs, 5 PFTs (slow, fast, LLP, SLB, intermediate) 

4. 2 trade-offs, 282 species. 

Annual recruitment rates (at 1 cm dbh) for each PFT were determined as the average annual 

sum of recruits (per ha) of species that were assigned to the PFT. For scenarios 2 and 4, species 

without observed recruits (25 species) were assigned one recruit in 25 years and 50 ha, i.e. 

0.0008 recruits per year and ha. New recruits enter the simulation every year and experience 

deterministic mortality every year. However, annual recruit numbers were determined from 5-

year census intervals. Thus, we adjusted annual recruit numbers by species/PFT-specific 

mortality such that, after a 5-year time step, simulated recruit numbers matched observed 

average recruit numbers in 5-year census intervals in the 50-ha plot at BCI. 

Wood density (wd) for PFTs was determined as the volume-weighted mean of wd in old-

growth forest. Wood density is from bci.spptable (29; sometimes to genus or family level only). 

Individual tree volume was calculated as 

volume = exp(−1.499+2.148*log(dbh)+0.207*log(dbh)²−0.0281*log(dbh)³)/1000. 

Volume-weighted wood density of the PFTs in secondary forest was slightly different from 

that of the PFTs in the old-growth forest, due to differences in species’ abundance. We used the 

volume-weighted wood density of the PFTs in old-growth forest, when we calculated AGB in 

simulations of old-growth forest dynamics, and wood density of the PFTs in secondary forest 

plots, when we calculated AGB in simulations of secondary forest succession.  

 

Species assignment to PFTs, model initialization and validation 

Old-growth forest – In the 50-ha permanent plot in tropical moist forest on Barro Colorado 

Island (BCI), Panama, every tree ≥ 1 cm dbh is tagged, mapped, and measured approximately 

every five years (24). In this paper our analyses are based on six censuses (conducted between 

1985 and 2010). We leave out the first census of 1982 because in this census some tall trees with 

buttresses were measured at lower heights than in subsequent censuses introducing a bias in 

basal area and AGB estimates. Detailed methods for the plot censuses can be found in (2) and 

(12). 
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For comparison of model predictions with data, we assigned species to PFTs based on their 

PCA scores along the 1st or 1st and 2nd PCA axis. For scenarios 1 and 3, we assigned species to 

the PFT with the closest location that was used for parameterization (Figs. 1 and 2A in main 

manuscript). For scenario 1, 98 species were assigned to the ‘fast’ PFT, 83 to the ‘slow’ PFT, 

and 101 to the ‘intermediate’ PFT. For scenario 3, 75 species were assigned to the ‘fast’ PFT, 76 

to the ‘LLP’ PFT, 60 to the ‘slow’ PFT, 30 to the ‘SLB’ PFT, and 41 to the ‘intermediate’ PFT 

(Data S1). For visualization purposes, we used the same PFT assignments for scenarios 2 and 4, 

where all species were simulated individually. 

For simulation of old-growth forest dynamics, we initialized the model with the average (in 

terms of species abundances and tree sizes) of the 50-ha plot on BCI in 1985. Individuals of 

species that were not included in the PCA (mostly palms and hemiepiphytes, 1.4% of 

individuals, 3.5% of basal area) were omitted in these calculations as they could not be 

associated with a PFT. Thus, the initial state of the model is slightly less populated than the real 

forest. Species were assigned to one of 111 size classes and tree numbers were aggregated by 

size class and species/PFT. Size classes were 1 cm wide for individuals between 1 and 50 cm in 

dbh, 2 cm wide for individuals between 50 and 100 cm in dbh, and 5 cm wide for larger 

individuals. The lower limit of the size class was used as initial cohort size in the PPA model. 

We validated the model against field data in terms of overall basal area, AGB, and 

abundance per PFT, as well as in different size classes. Forest structure and composition was 

determined from the six censuses of the 50-ha plot (1985−2010). Basal area and AGB were 

compared for the size classes 1−20 cm, 20−60 cm, ≥ 60 cm, ≥ 1 cm dbh (total). Abundance was 

compared for the size classes 5−20 cm, 20−60 cm, ≥ 60 cm, ≥ 5 cm dbh (total).  

As measures of predictive power, we calculated the root mean square error (RMSE) of 

prediction for total basal area. RMSE measures the average deviation of the predicted value from 

the observed value and is in the same unit as observations (m²/ha). We also calculated the mean 

absolute scaled error (MASE) to compare the predictive power of different model 

parameterizations at the PFT level that are at different scales (30). MASE is scale-independent 

and measures the predictive power of a model relative to a naïve random walk forecast. 

We compared simulated (after 100 years of simulation) and observed maximum diameters. 

Maximum diameter for each PFT in the field data and the simulations was calculated as the 

largest 5-cm diameter class with >0.1 individuals per ha. For scenarios 2 and 4 (282 species), it 

was calculated for each species as the largest 5-cm diameter class with >0.005 individuals per ha. 

We compared the diameter distribution of simulated 400-year-old forest with the observed 

diameter distribution of the old-growth forest. The observed diameter distribution again is an 

average of six censuses and includes palms and hemiepiphytes. All analyses were carried out in 

R (31). 

 

Secondary forest – Data on secondary forests is from eight forest plots (1 ha each) in the Barro 

Colorado Nature Monument National Park, all plots are <7 km away from the old-growth forest 

plot (15, 32, 33). There were two plots in each of four age classes (40, 60, 90, and 120 years). All 

secondary forest stands had been in agriculture, including pasture, swidden farming, and 

plantation farming, for undetermined lengths of time prior to fallow (15). The plots were 

inventoried between 2011 and 2014. In all plots, every tree ≥ 5 cm dbh was tagged, mapped, and 

measured, and in most of the plots, in a 0.5-ha subset of the plot every tree ≥ 1 cm dbh was 

tagged, mapped, and measured. We only considered the largest stem of multi-stemmed 

individuals to match old-growth forest data. 
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We excluded 254 individuals without recorded dbh as well as palms (8 species, 474 

individuals), hemiepiphytes (1 species, 4 individuals), cultivated species (1 species, 1 

individual), and unidentified individuals (214). Of the remaining 242 species (9935 individuals), 

we had no information on demographic strategy from the old-growth forest for 50 species (1212 

individuals). We assigned some of these species to the PFTs of a closely related species, and 

others based on average demographic characteristics of taxonomically-related species and/or 

species with similar functional traits, i.e. wood density and growth form (Data S2). Wood density 

and growth form is from bci.spptable (29; sometimes to genus or family level only). 

For simulation of secondary forest succession, we initiated the model with the average of 

two 1-ha 40-year old secondary forest plots. Species were assigned to one of 111 size classes and 

tree numbers were aggregated by size class and PFT. Size classes were 1 cm wide for individuals 

between 1 and 50 cm in dbh, 2 cm wide for individuals between 50 and 100 cm in dbh, and 5 cm 

wide for larger individuals. The lower limit of the size class was used as initial cohort size in the 

PPA model. 

We validated the model against field data in terms of total basal area, AGB, and abundance 

per PFT, as well as in different size classes. Basal area, AGB, and abundance were compared for 

the size classes 5−20 cm, 20−60 cm, ≥ 60 cm, ≥ 5 cm dbh (total), because sampling of the 

different secondary forest plots <5 cm dbh was inconsistent. Observed AGB was calculated 

using the same PFT-level wood density as in the respective model scenario. As a result, total 

observed biomass varies slightly between the different model scenarios. To calculate RSME and 

MASE, we averaged the observations in the two 1-ha plots per age class to yield a single time 

series of basal area. 

 

Comparison of PFT-level and species-level simulations 

For the old-growth forest, the species-based simulation including two trade-offs (scenario 4) 

performed slightly worse than the PFT-based simulation (scenario 3) and slightly overestimated 

the basal area of fast species, slow species, and LLPs. The reason was that growth rates in the top 

(and second) canopy layer were overestimated and/or mortality rates in the top canopy layer 

were underestimated for some species, e.g. for Cecropia insignis (fast), Hybanthus prunifolius 

(slow), Poulsenia armata (fast), Quararibea asterolepis (LLP), Trichilia tuberculata (slow). 

This can occur because species have different sample sizes in the different canopy layers. As an 

example, C. insignis has few individuals in the lowest canopy layer 4, while H. prunifolius has 

few individuals in the top canopy layer. Thus, the demographic rates in different layers are 

associated with different levels of uncertainty, which affects species positions in the PCA space, 

and hence parameters estimates. 

For the secondary forest plots, most of the discrepancy between observed and simulated 

basal area is due to the fact that species composition and especially species abundances varied 

strongly between the different plots. The model was initialized with the species composition and 

abundance of the two 40-year-old plots, but simulation results were validated against data from 

different plots. Additionally, single species that were rare in the old-growth forest (used to derive 

demographic rates), were affected by the same sample size issue mentioned above. Examples are 

Apeiba tibourbou (fast), Cordia alliodora (fast), Lacmellea panamensis (LLP), Pachira sessilis 

(LLP), Terminalia amazonia (LLP), and Xylopia macrantha (LLP), for which growth rates in 

single layers were overestimated. For Apeiba tibourbou, mortality was additionally 

underestimated. All of these species were especially abundant in the 40-year-old plots. Thus, the 

combination of idiosyncrasies in species composition and unrealistic parameter estimates leads 
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to the inferior performance of the species-based approach. The PFT-based approach, in contrast, 

averages over species composition as well as demographic rates and delivers accurate predictions 

of ‘average forest succession’. 

 

Simulation of early successional dynamics 

We took two approaches to assess model behavior during early succession (<40 years). First, we 

derived recruitment rates in high-light conditions (gaps) and simulated forest succession from 

bare ground. Second, we initialized the model with sparser data from 20-year-old secondary 

forests and simulated forest recovery as in the main text. 

  

Gap-dependent recruitment rates – To estimate recruitment rates of species in very early 

successional forests from the old-growth forest data, we found the recruitment rates of species in 

areas of the forest that appear to be open canopy gaps. To find gaps within the old-growth forest 

data, we took subplots of 5 meter radius, spaced every 4 meters. If the total estimated crown area 

of the trees rooted within the 5 meter radius plots was less than the area of the plot, we called the 

center 4 meter radius of the subplot a "gap". Using these gap-specific recruitment rates for the 

first 25 years (and the average rates from old-growth forest subsequently), we simulated forest 

recovery from bare ground and compared it with the data from secondary forests starting at 40 

years. Here, as in the main text, scenario 3 (5 PFTs) reproduced the dynamics of the data most 

accurately (Fig. S11A). In scenario 1 (3 PFTs), the recovery of fast species was underestimated, 

while the recovery of slow species was overestimated. In scenario 2 (1 trade-off – 282 species), 

the recovery of slow species was underestimated. In scenario 3 (5 PFTs), fast species decreased 

too late, LLPs increased too slowly, and intermediate species had too much basal area. The 

overall recovery of basal area was too slow. Scenario 4 (2 trade-offs – 282 species) deviated 

most strongly from observed forest recovery. 

 

Initialization at 20 years – We used data from 0.48 ha of 20-year-old forests on trees ≥ 5 cm dbh 

(15) to initialize the model. As there was no information on small trees available, we used the 

data from the 40-year-old forest for the small size classes (1−5 cm dbh). We also excluded trees 

with a dbh >40 cm, because we assumed that those were remnant trees. Again, scenario 3 (5 

PFTs) reproduced observed forest recovery best (Fig. S11B). The scenarios only including one 

trade-off underestimate the rate of forest recovery, while scenario 4 (2 trade-offs – 282 species) 

considerably overestimated the rate of forest recovery. 

 

Both analyses do not change the qualitative results of the main text. However, the simulations 

beginning at 40 years better adhere to the strengths and limitations of our approach. This is 

because our model parameterization exclusively relies on the demographic rates of species in 

old-growth forest. However, the average recruitment rates of species in old-growth forests are 

likely greatly underestimating recruitment rates in very early successional stages, especially for 

early successional species. Moreover, starting from ‘bare ground’ in central Panama means 

starting from cattle pastures which are covered in dense grass and burn regularly. Seed 

characteristics of tree species that germinate in the face of strong competition with grasses and 

regular fires as well as traits of saplings that survive fires are outside the range of traits of species 

that occur in the 50-ha plot. Thus, very young secondary forests are, to a large degree, composed 

of species that are never or very rarely found in older forests and that also represent different 

demographic strategies. These factors make it difficult to extend the model to very early 
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successional forests without specific research on the demographic trade-offs they exhibit and 

data on early-successional forest dynamics. 

 

Disturbance interval 

Analyses from detailed LIDAR data from the year 2009 estimated 0.43% of the area of BCI to be 

canopy gaps with <2 m canopy height and 1.6% of the area to be canopy gaps <5 m canopy 

height (19). Assuming that the vegetation can re-grow to a canopy height between 2 and 5 m 

within one year, the fraction of the forest that is disturbed every year is between 0.43 and 1.6%. 

This corresponds to an average disturbance interval between 62.5 (100/1.6) and 232.6 (100/0.43) 

years.  

 

Age distribution and simulated equilibrium forest 

We divided inventory data from the six censuses between 1985 and 2010 from the 50-ha plot 

into 512 31.25 m x 31.25 m subplots and calculated the basal area (m²/ha) of species assigned to 

the slow and fast PFTs of scenario 3 for each subplot. Then, we determined the year (in steps of 

5 years) in a simulated succession to which the basal area of fast and slow PFTs in each subplot 

was most similar, respectively, and took their mean. As the model was initialized with inventory 

data from 40-year-old forest, we linearly extrapolated the basal area of PFTs for younger ages 

between 0 m²/ha for year 0 and the observed basal area at year 40. The resulting combined 

(across censuses) age distribution of subplots (Fig. S13) was then used to generate a ‘simulated’ 

equilibrium of the forest as the sum of simulated basal area or AGB of the respective ages, 

weighted by the proportion of subplots in the respective age class. Note: We only considered the 

fast and slow PFTs because they show a clear successional pattern, while LLPs maintain high 

and SLBs and the intermediate PFT maintain low basal area throughout much of the succession. 

 

Simulation of forest dynamics under different climate scenarios 

To evaluate forest dynamics under future climate scenarios, we first determined projected 

climate variables for the year 2070 under two representative concentration pathways (RCP2.6 

and RCP8.5). We then assessed the projected change in functional traits using established 

climate-trait relationships (34), and finally derived changes in demographic rates using trait-

demography relationships (8). 

 

Climate scenarios – We downloaded reference climate data (1979−2013) as well as climate 

projections (CMIP5) for 2070 (2061−2080) under RCP2.6 and RCP8.5 from CHELSA for the 

coordinates of BCI (lat 9.1543, lon −79.8461, 35, 36). We selected ten climate models with low 

interdependency (CanESM2, CESM1-CAM5, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-ESM2G, 

GISS-E2-H, HadGEM2-AO, IPSL-CM5A-LR, MPI-ESM-MR, NorESM1-M; 37). We then 

determined the mean of predicted mean annual temperature (°C * 10), annual precipitation 

(kg/m²), and temperature seasonality (standard deviation of monthly temperature, °C * 100) and 

precipitation seasonality (coefficient of variation of monthly precipitation, kg/m²) across the ten 

models (Fig. S15, Table S4). The aridity index and solar radiation were not available for climate 

projections. The ten models consistently predicted increasing temperatures for the year 2070. 

Projected changes in other climatic variables were more variable and rather moderate. Rainfall, 

temperature seasonality, and rainfall seasonality were predicted to slightly increase on average. 
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Projected changes in functional traits – We used data from Šímova et al. (34) to determine 

climate−traits relationships for three functional traits that are strongly related to the demographic 

rates of tree species at BCI (8), namely adult height (m, mean, SD), seed mass (mg, mean), and 

wood density (g/cm³, mean, SD). We fit linear models of grid-cell means and SDs of traits versus 

mean annual temperature (T), annual rainfall (P), and temperature (TS) and rainfall seasonality 

(PS), all of them in linear and quadratic form. Trait means and SDs were determined based on 

range maps for 88,417 New World species (38). From the 877 grid cells, we excluded non-

tropical climates and extremely seasonal climates to maximize the applicability of modeled 

relationships to BCI. We selected 187 grid cells with T>240 and TS<1000. We identified the 

most parsimonious models (based on AICc) using the dredge function in the ‘MuMIn’ package 

in R (Table S5). From these models, we predicted functional traits under the reference and future 

climate scenarios (Table S6). Consistent with continent-wide climate-trait relationships (34), 

mean height, seed mass and wood density were predicted to increase, while the SDs of height 

and wood density were predicted to decrease (Table S6). All changes in functional traits were 

more severe for RCP8.5 than RCP2.6. 

 

Projected changes in demographic rates – Demographic rates and spectra show strong 

relationships with functional traits and trait spectra (8). Specifically, the growth-survival trade-

off (x) is aligned with wood density, while the stature-recruitment trade-off (y) is aligned with 

plant height. Both demographic dimensions are related to seed mass (Fig. 3a in 8). We applied 

projected changes in traits to predict functional traits under the two climate scenarios at BCI 

(Table S7). To project changes in demographic rates, we then fit linear models for species’ x and 

y positions in the two-dimensional demographic space, using wood density (WD), log maximum 

height, and log seed mass (R²(x) = 0.47, R²(y) =  0.50). As wood density is normally distributed 

at BCI, we transformed predicted mean log WD into mean WD by accounting for the variance of 

wood density (mean WD = exp(mean log WD + 0.279²), 39). 

Demographic strategies at BCI are predicted to shift towards slower strategies and also 

slightly towards more ‘long-lived pioneerness’ (i.e. towards more positive values along the x- 

and y-dimensions of the demographic strategy space; Table S8). As standard deviations of log 

height and log wood density are predicted to decrease, and as these two traits are strongly 

aligned with the two demographic dimensions, we would also expect the variation of 

demographic strategies along both dimensions to decrease. To derive species’ positions in 

demographic space under altered climate, we first adjusted the SD of demographic strategies by 

multiplying species’ original x values by 0.130/0.138 = 0.942 (RCP2.6), and 0.110/0.138= 0.797 

(RCP8.5), y values by 0.66/0.74 = 0.892 (RCP2.6), and 0.52/0.74 = 0.703 (RCP8.5). Note: As 

wood density is normally distributed at BCI, we applied the projected change in the SD of log 

WD to the SD of WD instead. We then shifted species’ positions by +0.140 (RCP2.6) and 

+0.322 (RCP8.5) along the x-axis, and by +0.024 (RCP2.6) and +0.089 (RCP8.5) along the y-

axis. 

 

Simulation of forest dynamics under different climate scenarios – We used the shifted positions 

in demographic space to derive updated parameter values and to assign species to the PFTs. We 

used the new PFT assignments to calculate recruitment rates per PFT in the same way as for the 

original model. We then predicted forest recovery under both climate scenarios (Fig. S14). For 

the model scenarios only including the growth-survival trade-off (scenarios 1 and 2), predicted 
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forest recovery hardly changed. However, for the model scenarios additionally including the 

stature-recruitment trade-off (scenarios 3 and 4), the rate of forest recovery was predicted to slow 

down with changing climate (cf. 40). This is mostly due to the predicted strong contraction of the 

demographic space along the second dimension, i.e. the stature-recruitment trade-off. This 

contraction outweighs the shift towards more ‘long-lived-pioneerness’. As a consequence, the 

most extreme long-lived pioneers (which attain the largest statures) are predicted to be lost, and 

the LLP PFT is predicted to be less ‘long-lived-pioneery’. 
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Fig. S1. 

Predicted and observed abundance in four model scenarios (rows; A: 1 trade-off – 3 PFTs, B: 1 

trade-off – 282 species, C: 2 trade-offs – 5 PFTs, D: 2 trade-offs – 282 species) and three size 

classes (columns). Simulated (lines) and observed (asterisks) abundance by PFT in an old-

growth tropical forest in Barro Colorado Island, Panama. Color code: purple – slow, yellow – 

fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S2. 

Predicted and observed aboveground biomass (AGB) in four model scenarios that differ in the 

number and demographic characteristics of simulated species or PFTs. (A) Predicted (lines) and 

observed (asterisks) AGB by PFT in an old-growth tropical forest (BCI, ≥ 1 cm dbh) and (B) in 

secondary tropical forest (≥ 5 cm dbh). Color code: purple – slow, yellow – fast, green – LLP, 

blue – SLB, red – intermediate, black – total. 
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Fig. S3. 

Predicted and observed (A) basal area and (B) aboveground biomass (AGB) in four model 

scenarios that differ in the number and demographic characteristics of simulated species or PFTs. 

Error bars show spatial variation (+/– 1SD) of basal area and AGB at the 1-ha scale in an old-

growth tropical forest (BCI, ≥ 1 cm dbh). Lines show model predictions. Color code: purple – 

slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total.  
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Fig. S4. 

Predicted and observed basal area in four model scenarios (rows; A: 1 trade-off – 3 PFTs, B: 1 

trade-off – 282 species, C: 2 trade-offs – 5 PFTs, D: 2 trade-offs – 282 species) and three size 

classes (columns). Simulated (lines) and observed (asterisks) basal area by PFT in an old-growth 

tropical forest in Barro Colorado Island. Color code: purple – slow, yellow – fast, green – LLP, 

blue – SLB, red – intermediate, black – total. 
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Fig. S5. 

Predicted and observed aboveground biomass (AGB) in four model scenarios (rows; A: 1 trade-

off – 3 PFTs, B: 1 trade-off – 282 species, C: 2 trade-offs – 5 PFTs, D: 2 trade-offs – 282 

species) and three size classes (columns). Simulated (lines) and observed (asterisks) biomass by 

PFT in an old-growth tropical forest in Barro Colorado Island, Panama. Color code: purple – 

slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S6. 

Simulated and observed basal area by species in 2010, i.e. after 25 years of simulation. 1:1 lines 

are shown in grey. 
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Fig. S7. 

Simulated and observed maximum diameters of the PFTs or species for four model scenarios. 

1:1 lines are shown in grey. See Suppl. for details. 
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Fig. S8.  

Predicted and observed abundance in four model scenarios (rows; A: 1 trade-off – 3 PFTs, B: 1 

trade-off – 282 species, C: 2 trade-offs – 5 PFTs, D: 2 trade-offs – 282 species) and three size 

classes (columns). Simulated (lines) and observed (asterisks) abundance by PFT in secondary 

tropical forest in the Barro Colorado Nature Monument National Park, Panama. Color code: 

purple – slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S9. 

Predicted and observed basal area in four model scenarios (rows; A: 1 trade-off – 3 PFTs, B: 1 

trade-off – 282 species, C: 2 trade-offs – 5 PFTs, D: 2 trade-offs – 282 species) and three size 

classes (columns). Simulated (lines) and observed (asterisks) basal area by PFT in secondary 

tropical forest in the Barro Colorado Nature Monument National Park, Panama. Color code: 

purple – slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S10. 

Predicted and observed aboveground biomass (AGB) in four model scenarios (rows; A: 1 trade-

off – 3 PFTs, B: 1 trade-off – 282 species, C: 2 trade-offs – 5 PFTs, D: 2 trade-offs – 282 

species) and three size classes (columns). Simulated (lines) and observed (asterisks) biomass by 

PFT in secondary tropical forest in the Barro Colorado Nature Monument National Park, 

Panama. Color code: purple – slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, 

black – total. 
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Fig. S11. 

Predictions of forest recovery for four model scenarios that differ in the number and 

demographic characteristics of simulated species or PFTs. (A) Simulation of forest recovery 

from bare ground using gap-recruitment rates for the first 25 years of the simulation and old-

growth recruitment rates thereafter. (B) Simulation of forest recovery starting from 20-year-old 

secondary forests. Asterisks show observed basal area by PFT in secondary tropical forest in the 

Barro Colorado Nature Monument National Park, Panama (≥ 5 cm dbh). Color code: purple – 

slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S12. 

Simulated long-term succession of scenario 3 (2 trade-offs – 5 PFTs) starting from 40-year-old 

secondary forest. Lines show simulated basal area and aboveground biomass of individuals ≥ 5 

cm dbh, asterisks show data from secondary forests. Recruitment rates of the PFTs are constant 

and set to annual averages of the number of observed recruits of species assigned to the five 

PFTs. Color code: purple – slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, 

black – total.  
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Fig. S13. 

Estimated age distribution of ~0.1-ha subplots from six censuses (1985, 1990, 1995, 2000, 2005, 

2010). 
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Fig. S14. 

Projected forest recovery in secondary tropical forest in the Barro Colorado Nature Monument 

National Park, Panama, for three climate scenarios: (top) reference climate (1979–2013, 

repeating results from Fig. 2C in the main manuscript), (middle row) RCP2.6, (bottom) RCP8.5 

and four model scenarios (columns). Color code: purple – slow, yellow – fast, green – LLP, blue 

– SLB, red – intermediate, black – total. The grey line at a basal area of 25 m²/ha is inserted to 

facilitate visual comparison between model scenarios. 
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Fig. S15. 

Projected climatic variables from ten global climate models. 
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Table S1. 

Loadings of demographic parameters in the wPCA. Survival and growth of trees (≥ 1 cm dbh) in 

four canopy layers is indicated by ‘Survival 1’ etc. Recruitment is the number of recruits per unit 

of total species basal area. Only the first one or two principal components are used to back-

calculate model parameters from species scores in PCA space, depending on the scenario. 

 
Parameters Parameter loadings 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Survival1 0.2103 0.2947 -0.5398 -0.4130 -0.4612 0.3415 -0.2380 0.1407 -0.0356 

Survival2 0.3370 0.4051 -0.0063 -0.2672 0.3237 0.0814 0.7127 -0.0482 0.1712 

Survival3 0.4376 0.2396 0.2830 0.2505 0.0200 0.1136 -0.4280 -0.1090 0.6323 

Survival4 0.4541 0.2032 0.2832 0.2428 0.1178 0.2067 -0.1305 0.1782 -0.7127 

Growth1 -0.1943 0.2070 -0.6090 0.5235 0.4575 0.2204 -0.0746 -0.1046 -0.0014 

Growth2 -0.3504 0.1586 0.2375 -0.5400 0.5401 0.2434 -0.3889 0.0320 -0.0285 

Growth3 -0.3899 0.3775 0.1968 0.2308 -0.1839 0.0735 0.1434 0.7262 0.1622 

Growth4 -0.3609 0.3588 0.2738 0.1188 -0.3651 0.3276 0.1296 -0.6163 -0.1215 

Recruitment 0.0415 -0.5578 0.0858 0.0571 0.0069 0.7750 0.2025 0.1228 0.1404 
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Table S2. 

PPA model parameters for 3 PFTs (1 demographic trade-off axis). G1 to G4 and mu1 to mu4 are 

annual growth (mm/y) and mortality (1/y) rates in four canopy layers, respectively. F is the 

number of new recruits over the 1 cm dbh threshold per year and hectare and wd is volume-

weighted wood density (g/cm³) in old-growth (OG) and secondary (SEC) forest. 

 

 
PFT Model parameters 

 G1 G2 G3 G4 mu1 mu2 mu3 mu4 F wd_OG wd_SEC 

slow 2.46028 0.68289 0.40415 0.36858 0.0174 0.0097 0.01037 0.01641 79.22 0.566 0.613 

fast 4.34277 2.21993 0.89384 0.67679 0.02851 0.02614 0.04981 0.06728 22.65 0.412 0.423 

inter- 

mediate 

3.2687 1.23125 0.60104 0.49945 0.02227 0.01592 0.02272 0.03323 12.62 0.503 0.542 

 

 

Table S3. 

PPA model parameters for 5 PFTs (2 demographic trade-off axes). G1 to G4 and mu1 to mu4 are 

annual growth (mm/y) and mortality (1/y) rates in four canopy layers, respectively. F is the 

number of new recruits over the 1 cm dbh threshold per year and hectare and wd is volume-

weighted wood density (g/cm³) in old-growth (OG) and secondary (SEC) forest. 

 

 
PFT Model parameters 

 G1 G2 G3 G4 mu1 mu2 mu3 mu4 F wd_OG wd_SEC 

slow 2.46028 0.68289 0.40415 0.36858 0.0174 0.0097 0.01037 0.01641 65.37 0.635 0.624 

fast 4.34277 2.21993 0.89384 0.67679 0.02851 0.02614 0.04981 0.06728 20.83 0.403 0.421 

LLP 4.42383 1.6079 0.88258 0.67557 0.01576 0.00877 0.01479 0.02423 6.22 0.480 0.504 

SLB 2.4152 0.94283 0.40931 0.36925 0.03148 0.0289 0.03492 0.04557 16.83 0.653 0.611 

inter- 

mediate 

3.2687 1.23125 0.60104 0.49945 0.02227 0.01592 0.02272 0.03323 6.24 0.600 0.594 
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Table S4. 

Means of model projections from ten global climate models for four climatic variables. 

 

Scenario Temperature Precipitation Temperature 

seasonality 

Precipitation 

seasonality 

Reference (1979−2013) 258.0 3206.0 289.0 57.0 

RCP2.6 (2061−2080) 267.5 3487.3 339.0 58.6 

RCP8.5 (2061−2080) 282.8 3240.5 328.7 62.4 

 

Table S5. 

Most parsimonious models predicting functional traits from climatic variables (based on AICc) 

using the dredge function in the ‘MuMIn’ package in R. 

 

 

 

 

 

 

 

 

Table S6. 

Projected changes in functional traits using climate-trait models from Šímova et al. (34, Table 

S5). Differences between climate projections and the reference climate are shown in bold. 

 

Scenario Log Height 

(mean) 

Log Height 

(SD) 

Log Seed 

Mass 

Log Wood 

Density (mean) 

Log Wood 

Density (SD) 

Reference (1979−2013) 2.91 0.73 4.48 -0.50 0.095 

RCP2.6 (2061−2080) 2.93  

(+0.02) 

0.65  

(-0.08) 

4.64 

(+0.16) 

-0.47  

(+0.03) 

0.087 

(-0.008) 

RCP8.5 (2061−2080) 2.98  

(+0.07) 

0.51  

(-0.22) 

4.88 

(+0.40) 

-0.43 

(+0.07) 

0.067 

(-0.028) 

 

  

 T T² P P² TS TS² PS PS² R² 

Mean Log Height  x x x x x x x 0.76 

SD Log Height  x x x x x x  0.74 

Mean Log Seed Mass  x x x x x x  0.71 

Mean Log Wood 

Density 

x x x x x  x x 0.29 

SD Log Wood Density x x x x    x 0.41 
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Table S7. 

Projected changes in functional traits at BCI. Projected trait values at BCI were determined by 

adding the trait differences from Table S6 to current trait means and SDs. 

 

 

Table S8. 

Projected changes in the coordinates of tree species in a two-dimensional demographic space, 

where x corresponds to the growth-survival trade-off and y to the stature-recruitment trade-off 

(8). 

 

  

Scenario Log Height 

(mean) 

Log Height 

(SD) 

Log Seed 

mass (mean) 

Log Wood 

density (mean) 

Wood density 

(SD) 

BCI now 2.62 0.74 3.44 -0.63 0.138 

BCI RCP2.6 

(2061−2080) 

2.64  

(+0.02) 

0.66  

(-0.08) 

3.60  

(+0.16) 

-0.60  

(+0.03) 

0.130 

(-0.008) 

BCI RCP8.5 

(2061−2080) 

2.69  

(+0.07) 

0.52  

(-0.22) 

3.84  

(+0.40) 

-0.56 

(+0.07) 

0.110 

(-0.028) 

Scenario Mean x Mean y 

BCI now 0.133 0.181 

BCI RCP2.6 (2061−2080) 0.274 

(+0.140) 

0.205  

(+0.024) 

BCI RCP8.5 (2061−2080) 0.455 

(+0.322) 

0.270  

(+0.089) 
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Data S1. (separate file) 

Species scores in PCA space, PFT assignments, and model parameters for 282 tree and shrub 

species at Barro Colorado Island, Panama. 

 

Data S2. (separate file) 

Assignment of plant functional types (PFT) for species from secondary forest plots for which no 

demographic information was available from old-growth forest.  
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